THE SOUND OF THE FIFTIES

Umsetzung von authentischen Klängen mit Hilfe moderner Technik

Masterarbeit
im Studiengang Elektronische Medien
(Schwerpunkt Medientechnik)

vorgelegt von
Rawand Ahmad
Matrikel Nr. 19792
an der Hochschule der Medien, Stuttgart
am 01. März 2010

Prüfer:
Prof. Oliver Curdt
Prof. Jens-Helge Hergesell

Praxisbetreuer:
Dipl.-Ing. (FH) Heiko Schulz
Abstract

Auf dem praktischen Wege sollen die Produktionen Lösungsansätze aufzeigen, die dem Vergleich mit Originalen aus der Ära der 1940er bis 1960er Jahre standhalten und als authentisch eingestuft werden können.
Erklärung

Stuttgart, den 01. März 2010

Rawand Ahmad
4.2.2 Praktische Durchführung des Selbstbaus ... 81
4.2.3 Messungen ... 83
4.2.4 Erdungskonzepte ... 88
4.2.5 Der Telefunken V672 Vorverstärker als Fallbeispiel .. 89
4.2.6 Zeitaufwand für Fertigung, Montage und Inbetriebnahme 92
4.2.7 Die Effektgeräte ... 92

5 Praxisteil B: Produktion von Musikbeispielen ... 98
5.1 Workflow 1 ... 98
 5.1.1 Spezielle Anforderungen von Hillybilly / Western Swing 98
 5.1.2 Produktion mit Devils & Söhne ... 99
5.2 Workflow 2 .. 105
 5.2.1 Spezielle Anforderungen von Rockabilly / R&B .. 105
 5.2.2 Produktion mit The Lonesome Drifters ... 106
5.3 Workflow 3 .. 112
 5.3.1 Spezielle Anforderungen von Modern Rockabilly .. 112
 5.3.2 Produktion mit The Fenders 55 ... 113

6 Fazit ... 117

7 Quellenangaben ... 120
7.1 Literatur ... 120
7.2 PDF Dokumente ... 121
7.3 Internetquellen .. 122
7.4 Wikipedia ... 123
7.5 Abbildungsverzeichnis .. 124
7.6 Audio CDs .. 129
 7.6.1 Audio CD 1 begleitend zum Theorieteil der Arbeit 129
 7.6.2 Audio CD 2 begleitend zum Praxisteil der Arbeit 129
7.7 Anhang ... 130
1 Einleitung

Seit dem ersten Kontakt mit Bands, die sich der Musik der 1940er bis 1960er Jahre verschrieben haben, wurde klar, dass für solche Musik Studioproduktionen notwendig sind, die der authentischen Performance der Bands bei den Live-Auftritten gerecht werden. Aus der Leidenschaft für die Rock’n’Roll Musik der Fünfziger Jahre heraus entstand die Idee im Rahmen dieser Master Thesis die klanglichen Faktoren zu untersuchen, die eine Studioproduktion für vergleichbare Musik ausmachen und relevant sind, um eine authentisch klingende Aufnahme zu produzieren. Die Notwendigkeit, sich diesem Thema zu widmen wurde zudem durch viele Aussagen von Musikern, die den Aufnahmen aus der erwähnten Ära der Popmusik einen besonderen Zauber zusprechen und den sie bei modernen Aufnahmen vermissen unterstrichen. Nicht nur das klangliche Resultat, auch die Arbeitsweise wäh-

¹ Vgl. Ahmad (2008), Bachelor Thesis - Postproduktion von Popmusik
rend den Aufnahmen entspricht laut der Erfahrung der Musiker nicht dem Gefühl, das die Musik zu vermitteln versucht.

Fragestellung

Doch wo liegen die Ursprünge für diese Vorlieben, was ist die Motivation eines Rock’n’Roll Künstlers und welchen Instrumenten bedient er sich? Wie sah eine typische Studioumgebung in der Ära de Rock’n’Rolls aus und welche technischen Veränderungen grenzen die heutigen Tonstudios davon ab?

Vorgehensweise

Im Praxisteil A wird der Frage nachgegangen, wie eine Symbiose von Vintage Technik und modernen Elementen in einem realen Tonstudio aussehen kann, was bei einer solchen Verbindung zweier Philosophien zu beachten ist und wo sich Schwierigkeiten ergeben. Das Ziel hierbei besteht darin, das im Umfang der Master Thesis gegründete Tonstudio *Black Shack* auszustatten, in Betrieb zu nehmen und schließlich einige technische Gerätschaften im Selbstbau zu fertigen. Hierbei werden Prioritäten zwischen notwendiger Vintage-Technik und eventueller Austauschbarkeit durch moderne Geräte gesetzt.

Für den Praxisteil B sollen drei mögliche Arbeitsabläufe entwickelt und mit verschiedenen Bands in einer Aufnahmesituation getestet werden. Dabei wurden die Abläufe aktiv und spontan an die Anforderungen der Musiker angepasst.
2 Woraus bestand der Sound der Fünfziger?

2.1 Popularmusik in der ersten Hälfte des 20. Jahrhunderts

Um die populären Musikstile Amerikas in den 1950er Jahren verstehen und beurteilen zu können, ist das Wissen über ihre Bestandteile und musikalischen Einflüsse unabdinglich. Durch die Vielzahl an vorhandenen Kulturen und sozialen Schichten, gibt es hier zahlreiche verschiedene Hintergründe, die sich schließlich ab den 50er Jahren zu der musikalischen Erscheinung des Rock’n’Rolls entwickelt haben. Die folgenden Passagen sollen verdeutlichen, wie verschiedene Nationalitäten, zu der Entstehung einer bis heute währenden Musikform beigetragen haben. Im Fokus der Betrachtungen stehen die europäischen und afrikanischen Einflüsse.

2.1.1 Blues

Der Einfluss der Blues Musik auf die moderne Rockmusik erstreckt sich vom zwölfaktigen Blues-Schema, über spezielle Gitarrenzupftechniken, bis hin zu neuen Textinhalten, wie Unterdrückung Lieschaften, und Partys, die erstmals im Blues so klar zur Sprache kamen. Die folgenden Abschnitte beschäftigen sich mit den Ursprüngen der Musikrichtung Blues.

Entstehung

Im Jahre 1619 wurden die ersten afrikanischen Sklaven von einem holländischen Schiff nach Nordamerika verkauft, was den Grundstein für eine Jahrhunderte währende Unterdrückung und Ausbeutung legte, die die Afroamerikaner und ihre Nachfahren durchleben mussten. Die meist in den südlichen Gebieten Nordamerikas arbeitenden Sklaven, wurden dort für die Ernte und Weiterverarbeitung von Baumwolle auf den Plantagen der Gutsherren beschäftigt. Doch im Vergleich zu den weißhäutigen Knechten, die in der Regel der indentured servitude² verpflichtet waren, gab es für die schwarzen Sklaven kein Ende ihrer Dienstzeit, auf das sie

hinarbeiten konnten. Sie blieben stets dem Dienst ihren Gutsherrn gegenüber verpflichtet.³

„Wenn du dich nachts hinlegst und du wälzt dich von einer Seite auf die andere und kannst nicht schafen, was ist dann los? Der Blues hat dich.“ Lead Belly⁴

Die Sklaven bildeten eigene musikalische Ausdrucksformen und verarbeiteten damit die Unterdrückung durch die weißen Kolonialherren. So wurde während der Arbeit, auf dem Feld, in Gefangenenlagern, in der Kirche oder abends nach der Arbeit der Musik nachgegangen. Die musikalischen Fertigkeiten für die daraus hervorgehenden musikalischen Stile brachten die Sklaven aus ihrer Heimat Afrika mit, wo Musik ebenfalls stark verwoben mit dem alltäglichen Leben praktiziert wurde und somit tief in der Alltagskultur verankert war.

Merkmale

³ Vgl. Wyman, Havers, Hentz (2002), S. 18
⁴ Wyman, Havers, Hentz (2002), S. 71
⁵ Vgl. Sonnier, Jr. Austin (1994), S. 8
⁶ S. Anhang 7.7.1
afrikanische Musik eher auf einfachen, gleichzeitig ablaufenden und sich wiederholenden Strukturen auf. Ganz ähnlich verhält es sich mit der Rhy

mik.7 Dennoch hätte sich der Blues in seinem Heimatland auf eine völlig andere Weise entwickelt. Dies zeigt sich deutlich an den musikalischen Merkmalen der zeitgenössischen Blues Musik aus Mali, mit deren bekanntester Vertreter Ali Farka Touré.8 Während die Musiker in Afrika mit ihren eigens für ihre Musik entwickelten Instrumenten spielen, mussten die Sklaven, mit der neuen Situation konfrontiert improvisieren.

„[...] They were able to coax the sounds of home from those instruments, sounds that were still moving about the insides of their heads and caused a physical and psychological calm in an otherwise hostile atmosphere." 9

So wurden europäisch temperierte Instrumente kurzerhand durch Umstimmung an die afrikanischen Skalen angepasst oder vollständige Neuschöpfungen vollführt. Die Herkunft des Banjos wird bekanntermaßen auf die westafrikanischen Kürbisgitarre Banjar zurückgeführt. Ihre Ausführung wurde an die, meist spärlichen, vorhandenen Möglichkeiten zur Herstellung angepasst.10 Erst die als Reaktion auf die Stimmung der europäischen Instrumente entstandenen Open Tunings11 der Blues Gitarristen ermöglichten das virtuose und rhythmisch akzentuierte Spiel von Gitarristen wie Blind Willie McTell oder später Keith Richards.

Vorangestellt an den Einsatz von herzustellenden Instrumenten stand jedoch der Einsatz der Gesangsstimme, die in Ausdruck und Tonalität keineswegs an neue Gegebenheiten angepasst werden musste und wohl die intensivste Verbindung zum Ausdruck in der afrikanischen Musik und die größte Neuerung im Vergleich zur damaligen Musikkultur darstellt.

„In the fields of the South where most blacks spent a good deal of their lives, a new type of song had developed, a moaning, downhearted sound that rose up from the heavy burdens of slave life. It was somewhat related to the spirituals but had a different texture and could only be described as „the blues““.12

7 Vgl. Sonnier, Jr. Austin (1994), S. 12
8 S. beiliegende Audio-CD 1, Titel 03 Ali Farka Touré with Ry Cooder - Gomni
9 Sonnier; Jr. Austin (1994), S. 11
10 Vgl. Wyman, Havers, Hentz (2002), S. 27
11 Beim Open Tuning wird die Stimmung der Saiten nicht in Quarten, sondern mit Oktaven, Quinten und Terzen vorgenommen, woraus sich beim einfachen Anschlagen bereits ein Akkord ergibt.
12 Sonnier, Jr. Austin (1994), S. 22

HÖRBEISPIEL
03 – Ali Farka Touré with Ry Cooder - Gomni
04 – W.D. Stewart & Bennie Will Richardson – John Henry

14 Vgl. Wyman, Havers, Hentz (2002), S. 68
2.1.2 Rhythm & Blues

Obwohl der Rhythm & Blues als weiterentwickelte Form des Blues bezeichnet werden kann, spielte dieser Musikstil eine ganz eigene und ebenfalls fundamentale Rolle für die Entstehung des Rock’n’Rolls. Zu allererst ist dies darin begründet, dass die Songvorlagen, denen sich die ersten weißen Rock’n’Roll Künstler bedienten aus dem R&B kamen. So waren die ersten Hits von Pat Boone, Elvis Presley oder Johnny Cash Coverversionen bereits erschienener, aber weniger verbreiteter Blues oder R&B Hits.

Entstehung

16 Im Folgenden R&B genannt.
17 Vgl. George, Schnur (2002), S. 8
18 Vgl. George, Schnur (2002), S. 22
20 Vgl. George, Schnur (2002), S. 43
21 Vgl. George, Schnur (2002), S. 44

Merkmale

23 Vgl. George, Schnur (2002), S. 43
25 Vgl. George, Schnur (2002), S. 59
das Bottle-Neck Spiel, welche im Blues vorherrschend waren. Die E-Gitarre lässt ein prägnanteres Spiel zu und gibt die Möglichkeit die laut gewordene Rhythmusgruppe der Band zu übertönen. Auch der Gesang geht von einer monophonen oder call-and-response Form vermehrt zu einer Form des Quartettgesangs über, wie es in der Tanz- und Schlagermusik bereits der Fall war. Die allgemeine Betonung im R&B wird, angelehnt an den Boogie Woogie, auf den Backbeat/Afterbeat gesetzt, was die Grundlage für den Rock’n’Roll legt und eine Entwicklung weg vom Swing-Rhythmus darstellt. Der R&B hat sich zu vielen Unterarten weiterentwickelt und findet sich in der Musik des Soul, Funk, Disco und Rap wieder.

HÖRBEISPIEL

07 – The Coasters – I must be dreamin
08 – Frankie Lymon & Teenagers – Who can explain

26 Durch einen abgesägten Flaschenhals werden beim Bottle-Neck Spiel gleitende Töne auf der Gitarre erzeugt.
27 Musikalisches Stilmittel, das, vor allem beim Schlagzeug, eine Betonung der geraden Zählzeiten beschreibt.
28 Vgl. Albold, Bratfisch (1989), S. 29
29 Vgl. George, Schnur (2002), S. 8
30 Vgl. George, Schnur (2002), S. 55
2.1.3 Country

Entstehung

31 Vgl. Wyman, Havers, Hentz (2002), S. 178
33 S. Kapitel 2.1.4 u. 2.1.5
34 Vgl. Carlin (1995), S. 396

Ein Revolutionär, der ähnlich wie Rodgers durch seine einmalige Persönlichkeit und frischen Einflüsse in der Country Welt bekannt wurde, war Hank Williams. Seine Texte waren moderner, als die seiner Vorgänger und thematisierten im Vergleich zu den eher gesitteten Bluegrass Texten, das Nachtleben, Frauen, Alkohol, die Emotionen der Menschen und den Blues. Sein Stil wird als Honky Tonk bezeichnet, was durch die Verbreitung in den damaligen Honky Tonk Kneipen Texas’ hergeleitet wurde. Die Honky Tonk Bands waren meist mit E-Gitarre, Steel Guitar, Schlagzeug, Geige, Akkordeon und Kontrabass besetzt.35

Der weitere Verlauf der Country Geschichte steht vor allem im Zeichen der Stadt Nashville, die durch die beiden Köpfe Bradley und Atkins sowohl Bekanntheit, als auch wirtschaftlichen Erfolg für den Country brachte. Diese ging jedoch mit einer starken Annäherung zur Popmusik einher, was eine glatte, harmlose Musik hervorbrachte, wie es der Country in seinem Ursprung eigentlich war. Unzählige Gegenbewegungen zum Nashville Sound sind bis heute anhaltend. Unmittelbar in der Entstehungszeit waren es Bands aus Memphis, vor allem geprägt durch den Engi-

neer und Produzenten Sam Phillips.36 In den Sechziger Jahren stieß Bob Dylan ein Folk Revival an, das hin zu Country-Outlaws, wie Willie Nelson und heute zu progressiven Musikern, wie Will Oldham37, einem Vertreter des Alternative-Country geführt hat. Der Nashville Sound hat sich zu einem der größten Motoren des Musikgeschäfts entwickelt und bedient eine breite Masse der Öffentlichkeit mit harmlosen Popmelodien, die sich im Country Gewand ihrer Vorbilder präsentieren.38-39

Merkmale

Einige Merkmale, wie die eigenständige Instrumentierung und die Dur-basierten Harmonien, legen jedoch nahe, dass die öfters verwandte Bezeichnung *Country Blues* nur auf das innere Gefühl der Interpreten und weniger auf die musikalischen Stilmittel abzielt. So findet sich bei den Hillbilly Interpreten öfter eine Fiddle40, statt der Gitarre und auch die Gesangsphrasierungen unterscheiden sich von den der schwarzen Blues Sänger. Die Country Sänger sind stark von der europäischen Folklore geprägt, was sich in der Mehrstimmigkeit ihres Gesangs und den Phrasierungen zeigt. Die akustische Gitarre findet, anders wie beim Blues, keinen Einsatz als eigenständiges, expressives Medium, sondern wird meist als harmonische Akkordbegleitung leicht im Hintergrund gespielt. Auch der Wechselbass auf den tiefen Saiten der Gitarre, der später beim Rockabilly eine große Rolle sollte, wird hier bereits manifestiert.

36 Sam Phillips ist der wohl bekannteste Engineer und Produzent der 1950er Jahre. Im Verlauf der Arbeit wird mehrfach auf ihn Bezug genommen, da seine Arbeitsweise und Studiotechnik bestens dokumentiert ist.

38 Hank W. III, der als Musiker tätige Sohn von Hank Williams, singt auf seinem 2002 veröffentlichtem Album bezeichnenderweise von *Trashville* statt Nashville.

39 Vgl. Carlin (1995), Introduction XVI

40 Ugs. Ausdruck für eine Violine.
2.1.4 Rockabilly

„Literally the wedding of rock and roll with „hillbilly“ or country music, rockabilly is a limited style but one that was highly influential in the mid-fifties.“

„[...] It was important back then that we worked a rhythm into the bass patterns, since I didn’t use drums much in 1954.“ Sam Phillips

Dazu kommen die kräftig gespielte Westerngitarre und die prägnant gepickte E-Gitarre, die zusammen mit dem Sänger die Grundbesetzung eines Rockabilly Trios bildeten. Einige Gruppen setzten bereits früh ein simples Schlagzeug ein, um den wilden und stampfenden Charakter der Musik zu verstärken. Eine genaue Entstehung dieses Stils ist schwierig zu beschreiben, da wie bereits erwähnt, Vorformen davon im Hillbilly und R&B zu erkennen sind.

Fundamental für den Austausch zwischen den Kulturen waren auch die Radiosender, die letztendlich freie Zugänglichkeit zum R&B und Country gewährleisteten. Pionierarbeit leistete hier der Sender WDIA bei dem Künstler, wie B.B. King durch

41 Carlin (1995), S. 395
42 So wurden kleine Tanzbars bezeichnet, die mit Music-Boxen ausgestattet waren.
43 Escott, Hawkins (1991), S. 68
44 Vgl. Röglin (1993), S. 60
eigene Sendungen eine Plattform für Unterhaltung und Bewerbung ihrer Auftritte erhielten.46

„[…] White kids listened to R&B and blacks listened to country music long before rock’n’roll, but the mixing of the musics took place in social climate that was rigidly segregated.“47

„[…] wenn Bop der rebellische Abkömmling des Swing war, dann war Rockabilly der rebellische Ableger des Country und löste damit die damals beliebten verschiedenen Country-Stilrichtungen ab, die allesamt wichtige Einflüse für Rockabilly waren: Western Swing, Bluegrass, Country Boogie, Honky Tonk und Hillbilly. Das entscheidende Merkmal

46 Vgl. Escott, Hawkins (1991), S. 21
47 Escott, Hawkins (1991), S. 8
49 VÖ Sun #209 mit Blue Moon of Kentucky als B-Seite.
50 Vgl. El-Nawab (2005), S. 16
von Rockabilly aber war der Schuss Rebellion und die schwarzen Rhythm-&-Blues-
Einflüsse, die er in sich trug.”

HÖRBEISPIEL
15 – Johnny Burnette – The train kept a rollin’
16 – Jerry Lee Lewis – Whole lotta shakin’ goin’ on

2.1.5 Rock’n’Roll

[...] Rhythm and Blues war die Entdeckung des schwarzen Marktes – Rock’n’Roll die Aus-
betung der weißen Teenager, [...]” George S. 99

Das Genre des Rock’n’Roll, identisch wie den des R&B, Hillbilly oder Blues auf sei-
ne Ursprünge und Merkmale zu untersuchen, erscheint vor dem Hintergrund von
Nelson Georges 1988 erschienenen Buch R&B nahezu blasphemisch. In dem be-
reits in den vorherigen Kapiteln zum Vergleich herangezogenen Buch findet sich
eine äußerst kritische Auseinandersetzung mit dem Begriff und dem vermeintli-
chen Genre des Rock’n’Roll wieder, die auch anderen afroamerikanischen Autoren
gemein ist.52 George klassifiziert den Radio-DJ Alan Freed53 als Geldhai und Scharla-
tan, der ohne wirkliches Interesse für den R&B, aus finanziellem Interesse Promo-
tion und Förderung betrieben hat.54

„[...] Freed wusste sehr gut, dass Rock’n’Roll kein eigenständiger Stil war, sondern ein
Marketing-Konzept, das sich zu einem Lebensstil ausweitete.”

Er beschreibt, dass dieser Etikettierung nur durch wahre Rock’n’Roll Pioniere wie
Chuck Berry Leben eingehaucht werden konnte. Berry thematisierte in seinen Tex-
ten reale Sorgen und Wünsche der damaligen Teenager und verkörperte eines der
ersten Idole für junge Rock’n’Roll Gitarristen. Sein Stil schaffte eine neue Aufmer-
samkeit für die E-Gitarre im Rock’n’Roll und verdrängte damit das bis dahin pro-
minente Saxophon in den Hintergrund.56

51 Morrison (1998) S. 36
53 Biografie ist unter http://www.alanfreed.com abrufbar
55 George, Schnur (2002), S. 98
56 Vgl. George, Schnur (2002), S. 100

57 Vgl. Poore (1998), S. 15
58 Vgl. Röglin (1995), S. 47
59 Vgl. Poore (1998), S. 82
3 Merkmale der Musikproduktion in den 1950er Jahren

3.1 Instrumente & Verstärker

3.1.1 Akustische Western Gitarren

Abb. 1: Prinzipdarstellung des Schallweges bei der akustischen Gitarre

60 Vgl. Lemme (1977), S. 41
Die oben stehende Abbildung verdeutlicht die Funktionsweise der akustischen Gitarre und ergänzt diese um die Rückwirkung vom Korpus auf die Saiten und die des Raumes auf Korpus und Saiten. Selten wird die Westerngitarre mit einem Piezo-Tonabnehmer verstärkt, überwiegend wird ihr Klang durch das Gesangsmikrofon oder ein separat aufgestelltes Stützmirofon übertragen. Dies liegt darin begründet, dass der Klang eines Piezo-Tonabnehmers durch seine physikalischen Gegebenheiten abhängig vom Ort der Anbringung und der Bauform ist, woraus sich starke Kammfiltereffekte und eine deutliche Resonanzfrequenz ergeben.\footnote{Vgl. Lemme (1977), S. 118}

Von Elvis Presley ist bekannt, dass er viele Modelle des Herstellers C.F. Martin und Gibson eingesetzt hat. Dabei ist er von einem anfangs kleinen Korpus hin zu größeren Resonanzkörpern übergegangen, welche durch die steigende Zahl der Moden innerhalb des Korpus größere Lautstärken auf der Bühne und eine größere Klangfülle liefern.\footnote{Vgl. \url{http://www.scottymoore.net/guitars.html}} Allein bei der Blues Musik hat die Westerngitarre ihren Status aus der Anfangszeit aufrecht erhalten und wird heute noch, vor allem von Solomusikern, für das akzentuierte Zupf- und Slidespiel eingesetzt. Hier erfreuen sich eher kleinere Resonanzkörper großer Beliebtheit, was auf die Handlichkeit beim Slide-Spiel und den charakteristisch, authentischen Klang aus der Anfangszeit des Blues zurückzuführen ist.

\footnote{Vgl. Lemme (1977), S. 118}
\footnote{Strumming ist im Gegenteil zum Zupfspiel die Bezeichnung für das akkordische Begleitspiel.}
\footnote{Vgl. \url{http://www.scottymoore.net/guitars.html}}
3.1.2 Elektrische Gitarren

Die wichtigsten Faktoren, die den Klang einer E-Gitarre beeinflussen, sind die Anschlagposition und -stärke, die Beschaffenheit der Saiten, Korpusform, -material und Position und Breite des Tonabnehmers.64

Die Anschlagposition beim Spielen bestimmt die Gewichtung der Obertonschwingungen und ändert somit die Klangfarbe, Ausschwingzeit und Grundlautstärke. Dies ist in geringerem Maße auch auf die Anschlagstärke anzuwenden, wobei hier die Bauweise des angeschlossenen Verstärkers und auch der Raum deutlichen Einfluss nehmen. Außerdem hat eine Entwicklung von dickeren, geschliffenen und mit Nickel ummantelten Saiten, hin zu dünneren, Runddrahtsaiten mit Stahlumwicklung stattgefunden. Die Jazzgitarristen setzten hauptsächlich die ummantelten Saiten ein, um Quietschgeräusche beim Rutschen der Finger auf den Saiten zu vermeiden und bevorzugten große Durchmesser, aufgrund ihres volleren Tons und der besseren Übertragung der Schwingung auf den Resonanzkörpers der akustischen Jazzgitarren.65 Dies ist wohl auch der Grund dafür, dass Rockabilly Gitarristen wie Scotty Moore stets diese Saiten verwendeten und die Vorliebe in diesem Genre auch recht verbreitet ist.66 Der Vorteil der dünnen Saiten liegt jedoch in der schnelleren Bespielbarkeit und der besseren Möglichkeit den Effekt einer gleitenden Tonhöhenveränderung68 durch das Ziehen der Saite zu erreichen. Nicht zu vernachlässigigen ist auch das Alter der Saiten, das mit zunehmender Zeit eine Korrosion und somit eine Tiefpasswirkung beim Spielen auslöst.69 Die Ausbreitung der Moden, nach der Anregung des Körpers durch die Saiten, ist abhängig von der Dimension desselben und seines Baumaterials. Eine vollständige Erklärung der Einflüsse auf die Klangfarbe wird jedoch dem Gitarren- und Geigenbaumeister überlassen und somit soll hier ein Verweis auf entsprechende Fachliteratur genügen.70 Allen Konstruktionsmethoden ist jedoch gemein, dass die Zeit t in der ein

64 Vgl. Lemme (1977), S. 43
66 Vgl. http://www.scottymoore.net/gibson_guitars_of_scotty_moore.html
67 In den folgenden Kapiteln werden mehrere Verweise auf die Musiker Moore, Perkins oder Black als Vertreter des Rockabilly vorgenommen. Die Vielzahl an Informationsquellen hierzu ermöglicht dies und lässt so einen Vergleich verschiedener Klangästhetiken zu.
68 Diese Spieltechnik wird auch als Bending bezeichnet.
69 Durchmesser von 0,09 mm sind heute für die hohe E-Saite nicht mehr unüblich.
Oberton einer Gitarre abklingt, sich umgekehrt proportional zur Frequenz f verhält, was in der höheren Schallenergie der tiefen Frequenzen begründet ist.71 Weiterhin ist zu betonen, dass vollakustische Gitarren mit einem elektromagnetischen Tonabnehmer eine insgesamt geringe Ausschwingzeit72 aufweisen, als Gitarren, die mit einem massiven Korpus ausgestattet sind.73 Ein äußerst variabler Faktor, der oft auch im Nachhinein geändert werden kann, ist der Tonabnehmer der elektrischen Gitarre. Die klassische Ausführung ist der Single-Coil Tonabnehmer, der jedoch auch viele Ausführungen aufweist. Allen Single-Coils ist gemein, dass sie eine einzige Drahtwicklung, um einen oder mehrere einzelne Magnetkerne aufweisen. Der abgebildete Strat-Tonabnehmer ist mit 6 kleinen Stabmagneten ausgestattet, die jeweils auf die Saite gerichtet sind und ihre induktive Wirkung durch die Drahtspule und die Auslenkung der Saite erhalten. Meist ist der abgebildete Tonabnehmer ohne Metallkappe ausgeführt, was ihn gegenüber Einstreuungen äußerst empfindlich werden lässt. Der Halspickup an der Telecaster-Gitarre ist mit solch einer Metallkappe ausgestattet, weist jedoch auch eine höhere Windungszahl auf. Der grundsätzliche Frequenzgang eines Tonabnehmers ist alles nicht linear und tritt beispielsweise wie in der nebenstehenden Abbildung, mit einer deutlichen Resonanzfrequenz und einem damit einhergehenden starken Tiefpass und einem leichten Hochpass auf. Berechnet wird die Resonanzfrequenz aus folgender Formel:

$$f_0 = \frac{1}{(2\pi \cdot \sqrt{L \cdot C})}$$

Das Ersatzschaltbild ist prinzipiell das eines elektrischen Schwingkreises, wobei bei Formel und Ersatzschaltbild stets die Kapazität des Kabels und die Impedanz

\footnotesize71 Vgl. Lemme (1977), S. 43
\footnotesize72 Auch Sustain genannt.
\footnotesize73 Vgl. Lemme (1977), S. 43

Abb. 5: Der Einfluss verschiedener Tonabnehmerpositionen (links) und -breiten (rechts)

Lemmes Abbildungen verdeutlichen, dass durch die Position des Tonabnehmers eine Gewichtung der Grund- und Obertöne vorgenommen wird, was ähnlich wie Raummoden in einem Abhörraum von der Position und der Frequenz abhängig ist. Da die Amplitude der Grundtonfrequenz am näher zur Mensurmitte liegenden Halspickup größer ist, wird er meist mit einem warmen und weichen Klangcharakter assoziiert, während der Stegpickup weniger betonte Bässe hat. Der Klangunterschied zwischen einem Single-Coil und Humbucker Pickup erklärt sich durch Abbildung 4 r., die verdeutlicht, dass eine Doppelspule bei Frequenzen in der Größenordnung des Abstandes zwischen der Zentren der beiden Pole mit Kammfilterartefakten belastet ist. Auch ein Single-Coil ist durch seine geometrische Ausdehnung mit Kammfiltereffekten behaftet, die Ausprägung derer ist jedoch im Vergleich zum Humbucker zu den hohen Frequenzen nicht ansteigend.

74 Eine Abbildung, die den Einfluss von verschiedenen Lastwiderständen auf die Resonanzüberhöhung verdeutlicht, befindet sich im Anhang 7.7.2.
75 Bei einer durchschnittlichen Kapazität von 80-90 pF, ergibt sich eine Kabellänge von 5,6 - 6,3 m.
76 Vgl. Lemme (1977), S. 81 ff.
77 Vgl. Lemme (1977), S. 97 ff.
Bevor die E-Gitarre, wie wir sie heute kennen, an Bedeutung gewann, war es die sogenannte Hawaii-Gitarre, die in Western Swing und Hillbilly Bands den Klang von Stahlsaiten über verstärkte Tonabnehmer einbrachte. Die Hawaii-Gitarre wird in horizontaler Anordnung und auf einer Ablage gespielt78. Sie weist eine deutlich höhere Saitenlage als handelsübliche E-Gitarren auf Dies ist darauf zurückzuführen, dass sie mit einer massiven Metallrolle gespielt wird, wobei die Saiten runtergedrückt werden. Die Bünde sind lediglich zur Orientierung angebracht, was den sanften, singenden Klang der Slides zwischen den Tönen hervorruft. Oft weisen die Instrumente mehrere Hälse auf, die mit verschiedenen Stimmungen versehen werden können. Die Stimmung wird als sogenanntes Open Tuning auf einen bestimmten Akkord gestimmt, was die Spielweise mit Steel Bar oder Bottle Neck erst ermöglicht. Die Verstärkung erfolgt über elektro-magnetische Tonabnehmer, Daher auch die alternative Bezeichnung Lap-Steel vom englischen Wort für Schoß.

Die völlig unterschiedlichen Spielweisen und klanglichen Ergebnisse sorgten jedoch dafür, dass bei der Musik des Rockabilly und Rock’n’Roll die Hawaii-Gitarre keine große Rolle mehr spielte. Vielmehr wird sie weiterhin in Country und Hillbilly Bands eingesetzt, die das Instrument neben der E-Gitarre weiterführen.

Die ersten Solid-Body Gitarren wurden von Pionieren wie Les Paul, Paul Bigsby und Merle Travis entworfen und hergestellt. Eine Serienproduktion von Solid-Body Gitarren konnte allerdings erst Clarence Leo Fender um-

Abb. 8: Fender Telecaster
setzen, der mit seiner ersten Gitarre Esquire und den Nachfolgern Telecaster, Stratocaster, Jazzmaster und Jaguar erachtliche Erfolge und Verbreitung erreichte.82

Der Einsatz der verschiedenen Gitarren in der Rockabilly und Rock’n’Roll Musik ist nicht ausschließlich auf objektiv, klangliche Gesichtspunkte zurückzuführen; sondern ist meist auch in Zusammenhang mit der Bespielbarkeit und dem Aussehen der Gitarren zu sehen, die ein individuelles Image transportieren.

“I bought one of those Fenders, a Telecaster or Stratocaster or something, but I couldn’t hold on to the thing with its little slim body. It might have something to do with it being a feminine shape, but I couldn’t get on with the Fender.” Scotty Moore83

Entgegen der Vorliebe Moore’s für verstärkte Vollresonanzgitarren, setzte Luther Perkins, der Gitarrist der Band um Country-Sänger Johnny Cash, fast ausschließlich das Fender Esquire Modell ein. Die Esquire Gitarre war im Vergleich zu Ihrem Nachfolger Telecaster, lediglich mit einem Single-Coil Pickup in Stegposition ausgestattet und vom Klang her offener und teilweise schon spitz.84 Der Umschalter hat, anders als bei der Telecaster mit zwei Pickups, nicht die Funktion zwischen zwei Pickup-Positionen umzuschalten, sondern schaltet eine weitere Klangregelung hinzu, die über ein einfaches RC-Glied funktioniert.

\subsection*{3.1.3 Gitarrenverstärker}

Elektrische Gitarren sind vom Funktionsprinzip her nicht zur akustischen Benutzung gedacht und sollten deswegen auch stets im Verbund mit dem Gitarrenverstärker betrachtet werden, da dieser den Klang der E-Gitarre entscheidend beeinflusst. So sind die nichtlinearen Verzerrungen von Vor- und Endstufe, die Verzerrungen durch die Lautsprecher und das Zusammenspiel mit dem Gehäusevolumen alles klangrelevante Faktoren.

Mit dem Aufkommen der ersten elektrischen Gitarren entstand also auch die Notwendigkeit, die bereits Anfang des 20. Jahrhunderts eingeführte Verstärkertechnik auf Basis der Elektronenröhre für Beschallungen und Instrumentenverstärkung verfügbar zu machen. Die Hersteller Fender und Gibson waren beide im Bereich von Hawaii-Gitarren, akustischen Gitarren und Mandolinen erfahren und somit

\begin{itemize}
 \item 82 Vgl. Lemme (1977), S. 14 - 15
 \item 83 Interview mit Moore aus dem Jahre 1983 von www.scottymoore.net
 \item 84 Vgl. http://www.lutherperkins.com/
\end{itemize}
war es ein logischer Schluss, die Herstellung der Verstärker selbst zu übernehmen. Fenders erster bekannter Gitarrenverstärker war der Dual Professional, der 1947 vorgestellt wurde und mit 2 x 10" Lautsprechern, 2 x 6S7 Röhren in der Vorstufe und 2 x 6L6 Stahlröhen in der Endstufe ausgestattet war. Charakteristisch für die Verstärker war auch, dass bis 1966 Gleichrichterröhren im Netzteil verwendet wurden, bis diese später durch Halbleiterteile ersetzt werden konnten.85 Grundsätzlich waren die ersten dieser Verstärker mit geringer Ausgangsleistung ausgestattet, was damit einherging, dass bereits bei geringen Lautstärken eine Verzerrung der Endstufen zu erreichen war. Dies wurde noch durch die in den ersten Verstärkern eingebauten Gleichrichterröhren unterstützt. Historisch gesehen war das selbstverständlich kein geplanter Effekt, sondern eine Nebenerscheinung des damaligen technischen Standes. Für ausführliche Erläuterungen zum Thema Gitarrenverstärkertechnik wird auf die entsprechende Literatur verwiesen.86

3.1.4 Kontrabass

Der Kontrabass wurde anfangs noch mit echten Darmsaiten bezogen, welche sich klanglich als ausgewogen und warm beschreiben lassen. Erst in den 1950er Jahren waren die heute standardmäßigen Stahlsaiten zugänglich und hielten im Jazz und Klassikbereich Einzug. Ihr Vorteil lag auf der Hand, sie waren äußerst stimmfest, weniger empfindlich gegenüber Feuchtigkeit und Temperaturschwankungen und rissen seltener. Im Bereich des Blues, Country, Bluegrass und Rockabilly blieben die Musiker jedoch bei den bereits bekannten Darmsaiten. Dies lag einerseits an der Gewöhnung, aber andererseits auch an der Tatsache, dass die Darmsaite beim sogenannten Slap-Spiel einen angenehm holzigen Ton erzeugt. Dabei scheppern die Saiten nicht und das Slap-Spiel wird durch die geringe Spannung der Saiten

⁹⁹ Bill Black war Bassist in Elvis Presleys Backing Band.

91 Hier werden klare Parallelen zum „Slap & Pop“ der Funk Bassisten deutlich, die diese Spieltechnik in den 70er Jahren auf den elektrischen Bass anwandten.
erwähnten klanglichen Nachteile, überträgt aber in akustisch schwierigen Umgebungen die tonale Information sauber und weniger rückkopplungsempfindlich. Im Studio kann das Piezo-Signal als Absicherung für ein sicheres und solides Klangergebnis dienen, meist wird der Bass jedoch mikrofoniert.

Bevor die Piezo Tonabnehmer Einzug hielten, erfand die Vorläuferfirma von Ampeg eine Konstruktion, die der Firma später ihren Namen geben sollte, den Amplified Peg oder kurz Ampeg.92 Diese Konstruktion wurde von der Unterseite in den Bass eingeführt und nahm somit im Inneren des Basses den Klang über ein spezielles Mikrofon ab.93 Da der Ampeg ausschließlich bei Live-Konzerten zum Einsatz kam, liegen leider weder Tondokumente vor, die Aufschluss über seine klanglichen Eigenschaften geben würden, noch Datenblätter, die seine Bauweise erklären könnten.

3.1.5 Schlagzeug

92 Peg ist die englische Bezeichnung für den verstellbaren Stachel des Basses, der sich an der Unterseite des Instruments befindet.

Über Johnny Cash ist bekannt, dass er in seinem Trio anfangs ohne Schlagzeug spielte und als Ausgleich eine Dollarnote in seine aggressiv gespielte Westerngitarre einklemmte, um den Klang einer mit Besen gespielten Snaredrum zu imitieren.

3.1.6 Weitere Instrumente

Die bereits genannten typischen Instrumente einer Rockabilly Besetzung wurden in verschiedenen Formationen um weitere ergänzt. So spielte Jerry Lee Lewis als

95 S. Fotografien von Aufnahmen aus den 1950er Jahren unter http://www.scottemore.net
97 Vgl. Escott, Hawkins (1991), S. 103

33

Charakteristisch für die Blues Musik kommt zu den erwähnten Instrumenten noch die virtuos gespielte und meist mit einem kleinen Gitarrenverstärker verstärkte Mundharmonika hinzu. Die Spieltechnik der Blues-Spieler ergänzt das einfache monophone und polyphone Spiel vom Hillbilly durch eine Modulation der Töne in der Amplitude, was mit der Veränderung des Hohlraumes im Mund erzeugt wird.

3.2 Technische Ausstattung der Tonstudios

3.2.1 Mikrofontechnik

Die Veränderung erfährt der Widerstand durch die Bewegung der Membran mit den eintreffenden Druckschwankungen des Schallereignisses. Mit der Membran bewegt sich ebenfalls das Kohlematerial, welches als Gries oder Zylinderstäbe ausgeführt sein kann und ändert somit den Widerstand zwischen der leitenden Membran und der Elektrode an der Rückseite der Kapsel.99 Die klanglichen Eigenschaften eines Kohlemikrofons sind im Bezug auf die Bandbreite, das Rauschen und den Klirrfaktor von ca. 5% im Vergleich zur heutigen Mikrofontechnik schlecht. Die ersten Bauformen in den 1920er Jahren waren lediglich mit einer Bandbreite von 600 bis 1900 Hz und einer starken Resonanzüberhöhung bei 1 kHz ausgestattet, was prinzipiell den relevanten Frequenzbereich für die Übermittlung von Sprache sicherstellt. 1934 waren bereits Kapseln mit einer Bandbreite von 75 bis 2500 Hz verfügbar, welche durch Verbesserungen im Bereich der Membran und der Kontaktplatte, keine starke Resonanz mehr aufwiesen. Später folgten dann Kapseln mit einem Push-Pull Design, welche durch gegensätzliche Verschaltung zweier Kapseln eine Verringerung des Klirrfaktors erreichen und eine Bandbreite von 60 Hz bis fast 10 kHz erreichen. Durch die Bauweise eines variablen Widerstands ist das Rauschen des Kohlemikrofons jedoch immanent und kann nur vermindert, aber nicht eliminiert werden.

Heutzutage befinden sich Kohlekapseln überwiegend in günstigen Gegensprechanslagen und wurden in ihrer Domäne, den Fernsprechtelefonen, von der günstigen und klanglich vorteilhafteren Elektret-Kondensatorkapsel verdrängt. Dennoch waren die Kohlemikrofone bis in die 1930er Jahre die einzigen erhältlichen Modelle und wurden bei Rundfunk und Musikaufnahmen eingesetzt.100

Ein weiterer Bautyp, welcher heute noch weit verbreitet ist, ist der des dynamischen Mikrofons. Dieser Typ kann sowohl als Tauchspulen-, als auch in Bändchenbauweise ausgeführt sein. Welche Bauweise früher aufgetreten ist, lässt sich schwer feststellen, da sich die Aussagen über Erscheinungsdaten sich überschneiden. So wurde sowohl das erste Bändchenmikrofon RCA PB-31101, als auch das erste Tauchspulenmikrofon Western Electric 618A Anfang der 1930er in Produktion

99 Vgl. Dickreiter (1979), S. 118
gegeben.102 Die erforderlichen Entdeckungen hierfür, wurden bereits einige Jahre vorher getätigt.103

In beiden Fällen wird mittels eines Permanentmagneten ein Magnetfeld erzeugt, darin wird ein Aluminiumbändchen oder eine an einer Kupferspule befestigte Membran von Luftschwingungen bewegt, wodurch eine Spannung an deren Enden induziert wird. Tauchspulenmikrofone weisen aufgrund der hohen Masse von Membran und Spule eine hohe Trägheit und damit verbunden eine weniger feine Höhenwiedergabe auf. Um dies zu kompensieren müssen konstruktive Maßnahmen, wie eine Anpassung der Luftkammern innerhalb der Kapsel durchgeführt werden, welche eine steigende Bedämpfung der Membran zu hohen Frequenzen hin durch eine resonante Wirkung kompensiert. Die Impedanz eines Tauchspulenmikrofons, kann durch die Dimensionierung der Kupferspule angepasst werden, so dass sich eine Impedanz von 200 Ω bei 1 kHz ergibt.

Mit der Einführung der RCA Bändchenmikrofone in den 1930er Jahren und der darauffolgenden Weiterentwicklung zum RCA 44-A wurde im Rundfunk und Fernsehbereich ein Standard gesetzt, der die Übertragungsqualität der bis dahin erschienenen Tauchspulenmikrofone weit übertraf. Bändchenmikrofone haben den Vorteil, dass der Leiter, der im Magnetfeld bewegt wird gleichzeitig die Membran darstellt und eine enorm geringe Masse aufweist. Das Bändchen selbst ist meist ein aus Aluminium gefaltetes Stück, das 2-3 μm dünn, 4 mm breit und ca. 5 cm lang ist. Das Bändchen wird lose zwischen dem Magneten eingespannt und überträgt durch seine geringe Masse und seine tiefe Abstimmung unterhalb des Übertragungsbereichs im Idealfall alle Frequenzen gleich. Anders gesagt ist die Auslenkungsgeschwindigkeit des Bändchens frequenzunabhängig und proportional zur Ausgangsspannung. Die Impedanz eines solchen Mikrofons liegt ursprünglich unter 1 Ω und wird erst durch einen nötigen Ausgangsübertrager im Mikrofon auf einen Wert zwischen 25 und 200 Ω gewandelt. Hierbei findet auch eine nötige Pegelverstärkung statt, denn die Ausgangsspannung dynamischer Mikrofone ist meist sehr gering und stellt hohe Anforderungen an die eingesetzten Mikrofonverstärker.104

\begin{footnotesize}
102 Vgl. http://www.coutant.org/we618a/index.html
103 Eine 1924 erschienene Ausgabe der Siemens Zeitschrift bestätigt die vielgelesene Aussage, das Bändchenmikrofon sei von E. Gerlauch und W. Schottky in Deutschland gleichzeitig mit dem Bändchenlautsprecher entwickelt worden. Siehe Anhang 7.7.6.
104 Vgl. Dickreiter (1979), S. 123
\end{footnotesize}
ihrer Grundbauweise sind Bändchenmikrofone Druckgradientenempfänger mit der Richtcharakteristik einer Acht und weisen dadurch einen starken Nahbesprechungsfehler auf. Aus diesem Grund sind die frühen RCA Mikrofone mit einem M/V Schalter ausgestattet, wobei für Musikaufnahmen, welche meist in größerer Entfernung stattfinden ein linearer Frequenzgang und für Sprachaufnahmen in einer Entfernung von weniger als 1 m eine Absenkung der tiefen Frequenzen empfohlen wird.\footnote{Vgl. RCA – Instructions for Polydirectional Microphone 77-DX (1955), S. 7}

Während die Bändchenmikrofone in den USA bis in die Sechziger Jahre für Rundfunk und Musikaufnahmen eingesetzt wurden, fand in Deutschland Anfang der 1930er Jahre ein Wechsel hin zu den von Neumann eingeführten Kondensatormikrofonen statt. Die weitere Nutzung von Bändchenmikrofonen war nicht auf technische Gesichtspunkte und Spezifikationen, sondern auf klangliche Präferenzen zurückzuführen, welche den Bändchenmikrofonen seit einigen Jahren ein Revival bescheren. Diese Mikrofonbauart weist meist einen als angenehm empfundenen Höhenabfall ab 10 kHz auf, der nicht mit der Tiefpass-gefilterten Aufnahme eines Kondensatormikrofones verglichen werden kann. Darüber hinaus wird den Bändchenmikrofonen eine realistischer und transparenter Klang nachgesagt, was auf das lose aufgehängte Bändchen zurückgeführt wird.

3.2.2 Verstärkertechnik

107 Vgl. Telefunken, Beschreibung der Kondensatormikrofone M301, M302, M303 (1929), S. 3
108 Vgl. Dickreiter (1997), S. 176
Funktionsweise der Elektronenröhre

Die Elektronenröhre findet in der Audiotechnik Einsatz bei der Gleichrichtung und Verstärkung von Spannungen. Sie ist in ihrer Grundform mit zwei Elektroden bestückt, die als Kathode und Anode bezeichnet werden. Diese befinden sich in einem hochevakuierten Glasgefäss, was die Grundlage für eine Steuerung der durch Hitze freigemachten Elektronen liefert. Die erhitzte Elektrode wird Kathode genannt und ist der Elektronen aussendende Teil, während die Anode Elektronen aufnimmt. Die einfachste Form der Elektronenröhre stellt die Diode dar, auch Gleichrichterröhre genannt, mit der die negativen Halbperioden einer Wechselspannung unterdrückt oder aber durch eine besondere Schaltung in positive umgewandelt werden können.\(^{111}\) Für die Audiotechnik spielt dieser Typ der Elektronenröhre heutzutage eine eher untergeordnete Rolle, ist aber in Netzteilen von historischen Gitarren- und Mikrofonverstärkern zu finden, wo er die Netzgleichrichtung übernimmt.

Entscheidend für die Verstärkung von Spannungen sind die Typen der Triode, Tetrode und Pentode. Hierbei handelt es sich um erweiterte Bauformen, die zwischen Kathode und Anode mit einer oder mehreren gitterförmigen Elektroden ausgestattet sind, die Steuerungsaufgaben bei der Spannungsverstärkung übernehmen können. Aussagen über die Zusammenhänge von Stromfluss und angelegten Spannungen können durch die Kennlinien der jeweiligen Röhrentypen getroffen werden.\(^ {112}\) Die Steuerung der Verstärkung der Elektronenröhre erfolgt durch die Steuerspannung \(U_{st} \), die sich aus Gitterspannung \(U_g \) und einem Faktor \(D \) der Anodenspannung \(U_a \) zusammensetzt. Der resultierende Strom an der Anode und dem Gitter wird Emissionsstrom \(I_e \) genannt und kann durch eine negative Gitterspannung vollständig auf die Anode konzentriert werden. Abgesehen von der Minimierung von Verzer-

\(^{111}\) Vgl. Schroeder (1963), S. 15
\(^{112}\) Vgl. Schroeder (1963), S. 15
rungen, kann hierdurch eine leistungslose Aussteuerung des Anodenstroms durch die negative Gitterspannung erfolgen, was eine Besonderheit der Elektronenröhre darstellt.113 Die Kennlinien, aus denen sich die Werte für \(U_g \) und \(U_a \) bei einer gewünschten Anodenspannung ermitteln lassen, sind in der Regel die \(I_a/U_C \) Kennline mit \(U_a \) als Parameter und die \(I_a/U_A \) Kennline mit \(U_g \) als Parameter.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{kennlinienfelder}
\caption{Kennlinienfelder der Röhre EC 92}
\end{figure}

Drei Kenndaten, die das Verhalten der Triodenröhre rechnerisch beschreiben können, sind Steilheit, Durchgriff und der Innenwiderstand der Röhre. Die Steilheit \(S \) stellt das Verhältnis von Anodenstrom- zu Gitterspannungsänderung dar und kann als Steigungsmaß beider Grafiken in der Abbildung 12 auch grafisch entnommen werden. Sie wird speziell für einen Arbeitspunkt errechnet und ist auch nicht über den gesamten Kurvenbereich konstant. Der Durchgriff \(D \) oder der reziproke Wert \(\mu \) beschreibt als Differentialquotient die nötige Anodenspannungsänderung bei einer Gitterspannungsänderung um 1 V. Vorraussetzung ist hier, dass der Anodenstrom konstant bleibt, was nur bei gegensätzlichen Änderungen von \(U_a \) und \(U_g \) möglich ist. Für \(\mu \) ist auch die Bezeichnung Leerlaufverstärkungsfaktor gebräuchlich, welcher die maximale Verstärkung der jeweilige Röhre darstellt. Der Innenwiderstand \(R_i \) der Röhre gibt als Differentialquotient das Verhältnis von \(U_a \) zu \(I_a \) bei konstanter Gitterspannung an. Da er das Verhältnis einer Spannungsänderung zu einer Stromänderung beschreibt, stellt er den Wechselstromwiderstand der Röhre, nach Außen hin dar.114 Wie auf der Abbildung 13 zu erkennen, kann der Arbeitspunkt an dem eine Röhre betrieben wird, den Anforderungen der Schaltung ange-

113 Vgl. Schroeder (1963), S. 28
114 Vgl. Schroeder (1963), S. 31
passt werden. Zur Ermittlung des Arbeitspunktes ist ein grafischer und ein rechnerischer Weg gegeben, denen beiden folgende Gleichung zugrunde liegt:

\[I_a = \frac{U_B - U_a}{R_a} \]

Bei einem gegebenen Arbeitspunkt P1, mitsamt den Werten \(U_B \), \(U_g \) und \(R_a \) kann hier über die Berechnung oder geometrische Ermittlung zweier möglicher Hilfspunkte P2 / P3, der gewünschte Arbeitspunkt festgestellt werden.\(^{116}\)

Abb. 13: Ermittlung des Arbeitspunktes mithilfe der Widerstandsgerade durch P1, P2, P3

Da jedoch selten Wechselströme, sondern in der Audiotechnik immer eine alternierende Spannung übertragen und verstärkt werden soll, muss die Stromänderung zu einer Spannungsänderung werden. Hierfür wird an der Anode ein Widerstand \(R_a \) angelegt, über den die gleichphasigen Änderungen von \(i_a \) und \(u_{ga} \) zu einer gegenphasigen Änderung von \(u_a \) werden.\(^{117,118}\) Auch für die Bestimmung der Verstärkung \(v \) sind grafische und rechnerische Möglichkeiten gegeben, für die an dieser Stelle ein Verweis auf die entsprechende Literatur genügen soll.\(^{119}\)

Um die Ausführungen zu konkretisieren, sollen Grundverstärkerschaltungen mit Trioden aufgeführt und erklärt werden. Deren Bezeichnungen beziehen sich auf die Elektrode, welche mit der Schaltungsmasse verbunden wird und somit zur Ein- und Ausgangsschaltung gehört.

\(^{115}\) \(U_B \) steht für Batteriespannung und entspricht der Heizspannung der Kathode.

\(^{116}\) Vgl. Schroeder (1963), S. 39

\(^{117}\) Zur Erklärung: Ein anwachsender Strom \(i_a \) hat einen erhöhten Spannungsabfall an \(R_a \) zur Folge, was einem Rückgang der Spannung \(u_a \) gleichbedeutend ist. Sinkt der Anodenstrom ab, bedeutet das einen geringeren Spannungsabfall an \(R_a \) und somit einen Anstieg der Anodenwechselspannung. Folglich wird durch den Anodenwiderstand, aus einer stromverstärkenden Schaltung eine spannungsverstärkende.

\(^{118}\) Vgl. Schroeder (1963), S. 44

\(^{119}\) Vgl. Schroeder (1963), S. 43
Grundschaltungen der Elektronenröhre

Abb. 14: Grundschaltungen der Elektronenröhre

Bei der **Kathodenbasissschaltung** wird die Eingangsspannung zwischen Gitter und Kathode angelegt und zwischen Anode und Kathode abgegriffen. Arbeitet man bei dieser Schaltung mit einer negativen Gitterspannung und nicht zu hoher, oberer Grenzfrequenz, so ist der Eingangswiderstand dieser Schaltung hoch. Da die abgenommene Anodenspannung nicht nur die verstärkte Gitterspannung enthält, sondern der Gleichspannung U_a überlagert ist, werden sogenannte Koppelkondensatoren an der Anode für die Entkopplung eingesetzt. Wie der Abbildung XX zu entnehmen ist, bilden C_1 und R_g ein RC-Glied mit Hochpasswirkung. Bei geschickt gewählter Kapazität blockt C_1 die Gleichspannung gegenüber nachfolgenden Stufen, aber auch gegenüber dem Eingang ab, ohne das Signal hinsichtlich der unteren Grenzfrequenz hörbar zu beschneiden. Die Dimensionierung von C_2 wird durch die maximale Spannungsfestigkeit in Abhängigkeit der Betriebsspannung $U_c = U_b \times (0,5 \times U_b)$ vorgegeben.\(^{120}\)

\(^{120}\) Vgl. http://www.frihu.com/content/diy/allgemein/kathoden-basis.html
Im Falle der **Gitterbasischaltung** liegt die Eingangssspannung zwischen Kathode und Gitter an, die Ausgangssspannung jedoch zwischen Anode und Gitter. Durch das Gitter als gemeinsamen Bezugspunkt, ergibt sich eine fast vollständige Entkopplung von Ein- und Ausgangskreis.\(^{121}\) Diese Schaltung weist einen geringen Eingangswiderstand auf, was kombiniert mit der Forderung nach einem Steuerstrom, in einer hohen Belastung der Quelle resultiert. In unveränderter Form kommt die Gitterbasischaltung lediglich in der HF-Technik zum Einsatz, während in der NF-Technik eher die Variante der Kaskodenschaltung eingesetzt wird.\(^{122}\)

Eine Möglichkeit für den Aufbau einer Kaskodenschaltung ist über eine gewöhnliche Kathodenbasischaltung am Eingang und eine dazu in Reihe geschaltete Gitterbasischaltung mit einer Pentode als zweite Stufe. Die erste Stufe verstärkt hierbei kaum Spannung, sie liefert durch ihren hohen Eingangswiderstand die Leistung für den niederohmigen Eingang der zweiten Stufe. Das Ergebnis ist eine größere erreichbare Verstärkung, als beim Normalbetrieb zweier Trioden, mit einem ähnlich günstigen Rauschverhalten, aber mit den vorteilhaften Verstärkungs- und Enkopplungseigenschaften einer Pentode.\(^ {123}\)

Für die **Anodenbasischaltung** wird die Anode wechselstrommäßig auf die Masse gelegt. Durch den Verzicht auf Widerstände in der Zuleitung der Anode wird verhindert, dass sich hier eine Wechselspannung aufbauen könnte, um die das Potenzial der Anode gegen Masse schwanken könnte. Die Anodenbasischaltung stellt keine verstärkende Stufe in dem Sinne dar, vielmehr wird diese Variante zur Impedanzwandlung und Phasenumkehr eingesetzt. Durch die 100%ige Gegenkopplung beträgt der Verstärkungsfaktor <1 und ist weitgehend frequenzunabhängig. Die Ein- und Ausgangsstufe und Anodenbasischaltung zur Impedanzwandlung am Ausgang

\(^{121}\) Vgl. Schroeder (1963), S. 257
\(^{122}\) Vgl. http://www.frihu.com/content/diy/allgemein/gitter-basis.html
\(^{123}\) Vgl. Schroeder (1963), S. 260
gangsimpedanz dieser Schaltung kann sehr hoch im Verhältnis zur Ausgangsimpedanz sein.124

Der Klirrfaktor

Den bereits abgebildeten Betriebskennlinien von Elektronenröhren ist anzusehen, dass diese Bauteile von sich aus nicht linear arbeiten, sondern eine sichtbare Kennlinienkrümmung aufweisen.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{kennlinien.png}
\caption{Abb. 17: a) Verstärkung mit einer linearen Kennlinie, ohne Verzerrungen b) Verstärkung mit einer linearen Kennlinie überlagerten quadratischen Kennlinie, unsymmetrische Verzerrungen c) Verstärkung mit einer kubischen Kennlinie, symmetrische Verzerrungen}
\end{figure}

Dies ist so zu verstehen, dass bei einer sinusförmigen Wechselspannung am Eingang sich der resultierende Anodenstrom, nicht exakt gleichförmig dazu verändert. Das führt, abhängig von der Art der Kennlinie zu Verzerrungen des sinusförmigen Ausgangsstromes und somit einer Verfälschung des Quellsignals. Zum weiteren Verständnis ist es notwendig zu wissen, dass Trioden grundsätzlich eine unsymmetrische Kennlinie und Pentoden eine symmetrische, s-förmige Betriebskennlinie aufweisen. Die FFT-Analyse bei linearer, quadratischer und kubischer Kennlinie veranschaulicht diese Verzerrung der Sinuskurve, als eine Überlagerung der Grundschwingung mit Oberschwingungen des Faktors 2\omega bei quadratischer und des Faktors 3\omega bei kubischer Kennlinie.125 Beschrieben werden

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fft.png}
\caption{Abb. 18: Darstellung der Verzerrungen über den Frequenzbereich bei verschiedenen Betriebskennlinien}
\end{figure}

124 Vgl. Schroeder (1963), S. 262
Diese durch nichtlineare Kennlinien hervorgerufene Verzerrungen häufig mit dem Klirrfaktor, welcher als Maß für die entstandenen Oberschwingungen des Signals gilt. Hierbei ist zwischen dem Gesamtklirrfaktor k und dem Teilklirrfaktor k_n zu unterscheiden. Der Gesamtklirrfaktor ist wie folgt definiert:

$$k = \frac{\sqrt{U^2 f_1 + U^2 3f_1 + U^2 4f_1 + \ldots}}{U_{ges}}$$

$k = $ Klirrfaktor, $U_{2f_1 \ldots} = $ Spannungen der neu entstandenen Oberwellen als Effektivwerte [V], $f_1 = $ Frequenz des Messtons, $U_{ges} = $ Spannung des verzerrten Gesamtsignals als Effektivwert [V]

Der Teilklirrfaktor beschreibt lediglich das Verhältnis einer Oberschwingung zur Grundschwingung:

$$k_n = \frac{U_n}{U_{ges}}$$

$k_n = $ Klirrfaktor n-ter Ordnung, $U_n = $ Spannung der n-ter Harmonischen als Effektivwert [V], $U_{ges} = $ Spannung des verzerrten Gesamtsignals als Effektivwert [V]

Die Angabe des Klirrfaktors erfolgt in %, wofür der Wert k mit dem Faktor 100 multipliziert werden muss.126

Für das Gehör haben sich die quadratischen k_2 Verzerrungen als angenehmer, als die kubischen k_3 Verzerrungen erwiesen. Dies erklärt die Notwendigkeit von klirrarmen Pentodenröhren in Endstufen von Verstärkern und die überwiegende Nutzung von Triodenröhren in den Vorstufen. Es widerlegt auch das Gerücht, Elektronenröhren würden lediglich k_2 Verzerrungen hervorrufen, da diese Beschreibung eine falsche Verallgemeinerung darstellt.127

Gegenkopplung

Um die Verstärkung weiter zu stabilisieren und den Klirrfaktor zu senken, wird in den meisten Verstärkerschaltungen mit einer Gegenkopplung gearbeitet. Hierbei wird die um 180° phasengedrehte Ausgangsspannung des Verstärkers dem Eingang zugeführt, wodurch der Verstärkungsfaktor verringert wird. In der Praxis ist ein Kompromiss zwischen einem akzeptablen Klirrfaktor und einer ausreichenden Verstärkung zu finden. Abb. X zeigt die Linearisierung der Verstärkerkennlinie, in Abhängigkeit vom Gegenkopplungsfaktor K. Es ist zu beachten, dass bei $K=1$, also einer ungedämpften Gegenkopplung der Verstärkungsfaktor gegen den Wert 1,

125 Vgl. Schroeder (1963), S. 99
126 Vgl. Dickreiter (1979), S. 746
127 Vgl. Dickreiter (1979), S. 744
also 0 dB geht. Eine spezielle Eigenschaft gegengekoppelter Verstärker, ist wie bereits gesagt der geringe Klirrfaktor, der erreicht werden kann. Dies gilt allerdings nur, solange sich der Arbeitspunkt unter der Aussteuerungsgrenze befindet.128 Ab dieser steigt der Klirrfaktor beachtlich an, wobei die entstehenden Obertonfrequenzen sowohl geradzahlige, als auch ungeradzahlige Vielfache der Grundfrequenz enthalten. Dies besagt, dass ein stark geradzahliges Klirrverhalten einer Vorstufe nur durch nicht gegengekoppelte Schaltungen in Röhrentechnik erreicht werden kann.129

![Diagram](https://via.placeholder.com/150)

\textbf{Abb. 19: Linearisierung der Verstärkerkennlinie durch eine Gegenkopplung mit }K \rightarrow 1.128

\textbf{Transistorschaltungen}

Während die Patente für die ersten Transistoren bereits 1925 angemeldet wurden130, waren die für die Audiotechnik relevanten bipolaren Transistoren erst in den Sechziger Jahren kostengünstig erhältlich und als gleichwertiger Ersatz für die Elektronenröhre verfügbar. Auch für die transistorisierten Verstärker existieren Grundschaltungen, die jedem Schaltungsentwurf zu Grunde liegen und im Ursprung vorerst einstufig aufgebaut sind. Eine Kaskadierung solcher einstufigen Verstärker hat als Ergebnis einen mehrstufigen Verstärker mit verbessertem Klirrverhalten und erhöhter Stabilität bezüglich Last- und Netzschwankungen. Bei den folgenden Grundschaltungen wird der Einfachheit halber lediglich die Variante mit einem Transistor der Zonenfolge npn dargestellt.

128 Vgl. Dickreiter (1979), S. 701
129 Vgl. http://en.wikipedia.org/wiki/Valve_audio_amplifier
Emitterschaltung

Die Namensgebung bei der Emitterschaltung ergibt sich aus dem Massepotenzial, das am Emitter anliegt. Die zu verstärkende Eingangsspannung u_1 liegt an der Basis an, die Ausgangsspannung u_2 wird zwischen Kollektor und Emitter abgegriffen. Die nebenstehende Abbildung zeigt diese Grundschalung mit den zusätzlich für die Basis-Emittervorspannung erforderlichen Basisteilern R_1 und R_2, sowie einem Generator mit Generatorwiderstand R_G und einem Lastwiderstand R_L. Der Betrag der Spannungsverstärkung V_u wird durch das Verhältnis der bereits erwähnten Spannungen u_1 und u_2 berechnet und lässt sich unter Einbezug von $\beta =$ dynamische Stromverstärkung des Transistors in Emitterschaltung, $R_C =$ Kollektorwiderstand, $R_L =$ Lastwiderstand und $r_{BE} =$ dynamischer Eingangswiderstand des Transistors in Emitterschaltung wie folgt weiter aufschlüsseln:

$$V_u = \frac{\beta \cdot (R_C || R_L)}{r_{BE}}$$

Der Eingangswiderstand der Schaltung liegt bei ca. 1 kΩ und ist nicht zu vernachlässigen, der Innenwiderstand der Schaltung ist relativ groß und wird in den meisten Fällen durch den Kollektorwiderstand R_c bestimmt. Wie im Schaltbild zu erkennen, ist die Ausgangsspannung in der Polarität um 180° gedreht. Die Verstärkung die mit der Emitterschaltung erreicht werden kann ist vergleichsweise groß.

Kollektorschaltung

Hier liegt der Kollektorzweig des Transistors über die Stromversorgung an Masse an, die Verschaltung ist bis auf den Emitterwiderstand R_E und der daran abzugreifenden Ausgangsspannung u_2 identisch zur vorherigen Schaltung. Die Spannungsverstärkung wird in diesem Fall über folgende Formel errechnet:

$$V_u = \frac{\beta \cdot R_E}{r_{BE} + \beta \cdot R_E}$$

, wobei in diesem Fall $\beta >> 1$ angenommen wird. In einer Vielzahl der Anwendungen ist das Verhältnis $\beta \cdot R_E >> r_{BE}$ gegeben, wodurch V_u gegen 1 geht und mit der
Schaltung somit keine effektive Verstärkung zu erreichen ist. Da bei der Kollektorschaltung ein Eingangswiderstand von mehreren MΩ erreicht werden kann und der Innen- respektive Ausgangswiderstand im Verhältnis dazu relativ klein ist, wird die Schaltung oft als Impedanzwandler eingesetzt. Wie auf der Abb. X zu erkennen sind u_1 und u_2 gleichphasig. Diese Schaltung verhält sich somit grundsätzlich in ähnlicher Weise, wie die Anodenschaltung.

Basisfrequenz

Bei der Basisschaltung liegt die Masse wechselspannungsmäßig an der Basis an, bezüglich der Spannungsverstärkung sind die Möglichkeiten hier sehr ähnlich wie bei der Emitterschaltung. Auch der Eingangswiderstand ist sehr klein und der Innenwiderstand wiederum sehr groß. Über den Kondensator C_1 wird die Basis wechselspannungsmäßig an die Masse gelegt. Abgesehen vom Einsatz bei der emittergekoppelten Schaltung, wird die Basisschaltung im Vergleich zur Emitterschaltung sehr selten eingesetzt. Durch ihre hohe maximale Grenzfrequenz wird sie fast alleinig in der Hochfrequenztechnik eingesetzt. Die Ausgangsspannung weist auch hier keine Phasendrehung zur Eingangsspannung auf.

Die bereits erwähnten Vorstufenschaltungen können mit verschiedenen Endstufenschaltungen kombiniert werden, welche beim klassischen Linearbetrieb in die Typen A-Betrieb, B-Betrieb und AB-Betrieb gegliedert werden. Die Eigenschaften der Einzelschaltungen lassen sich gleichartig auf die Röhrentechnik übertragen.

A-Betrieb

Die nebenstehende Abbildung zeigt einen Eintakt-A-Verstärker, bei dem ein Übertrager am Ausgang der Schaltung die Impedanzwandlung vom hohen Innenwiderstand des Transistors, hin zur geringen Impedanz der Last übernimmt. Beim A-Betrieb befindet sich der Arbeitspunkt grundsätzlich in der Mitte des Arbeitsbereichs, die Betriebsspannung liegt im statischen Betrieb am Kollektor des Transistors an. Der Arbeitspunkt ergibt sich einerseits durch die Senkrechte, die von der Betriebsspannung \(U_B \) gezogen wird und andererseits durch den Schnittpunkt der Verlustleistungshyperbel mit der Arbeitsgeraden. Trägt man die Ordinate des Arbeitspunktes ab, erhält man den Kollektorruhestrom \(I_C \) und gleichzeitig den halben Wert des Maximalstromes \(I_{C0} \). Die Verlustleistung \(P_V \) erreicht diese Schaltung im statischen Betrieb, die aus der Stromversorgung abgezweigte Leistung ist nahezu unabhängig von der Aussteuerung und hat ihr Maximum bei 50%. Dies bescheint dem A-Betrieb den schlechten Wirkungsgrad, weswegen sie im kommerziellen Massenbetrieb selten vorkommt. Der Eintakt-A-Verstärker weist jedoch auch deutliche nichtlineare Verzerrungen auf, die durch die Sättigungsspannung \(U_C \) gegeben sind. Aus diesem Grund ist der Gegentakt-A-Verstärker die deutlich gebräuchlichere Variante, die weniger nichtlineare Verzerrungen, jedoch aber einen ähnlich schlechten Wirkungsgrad aufweist. Beim symmetrisch aufgebauten Gegentakt-A-Verstärker arbeiten die beiden Transistorstufen, durch ihre zwischen Basis und Emitter liegenden Wechselspannungen, gegenphasig, erst am Übertrager \(T_{r2} \) findet die Phasendrehung statt. Auch bei dieser Schaltung gilt für die Kollektor-Emittersperrspannung der Zusammenhang \(U_{CE0} = 2 \cdot U_B \) und für den maximalen Kollektorstrom \(I_{C \max} = 2 \cdot I_{C0} \).
Für den Idealfall, dass der gekrümme Verlauf der Arbeitskennlinien von T_1 und T_2 exakt identisch ist, werden die nichtlinearen Verzerrungen hiermit aufgehoben. In der Realität führen Bauteiltoleranzen jedoch für geringe Unterschiede in den Kennlinien und damit einhergehende nichtlineare Verzerrungen. Durch die Gegenakttschaltung kann in der Summe eine verdoppelte Ausgangsleistung bei geringem Klirrfaktor erreicht werden und durch die gegenläufigen Kollektorgleichströme kann mit einem kleinen Übertrager gearbeitet werden, da dieser nicht vormagnetisiert werden muss.\footnote{Vgl. Dickreiter (1979), S. 688 ff.}

B-Betrieb

Beim B-Betrieb wird die Basis-Emittervorspannung so gering gewählt, dass die Transistoren gerade noch oder nicht mehr sperren. Dadurch fließt ein sehr geringer Kollektorstrom und der Arbeitspunkt befindet sich im unteren Knick der Transistorkennlinie. Im statischen Betrieb weist diese Schaltung nahezu keine Verlustleistung auf, welche erst bei Ansteuerung entsteht.

Durch die Gegenakttschaltung ist T_2 während der positiven Halbwelle der Eingangsspannung u_1 sperrend, während T_1 leitend ist. An der Primärwicklung des Ausgangsübertragers T_r2 liegen die Kollektorwechselspannungen u_{c1} und u_{c2} an,
welche durch die gegensätzlichen Wechselströme i_{c1} und i_{c2} wieder eine sinusför-
mige Ausgangsspannung ergeben.

Der Wirkungsgrad einer B-Gegentaktendstufe kann maximal 78,5 % erreichen, die maximale Verlustleistung an den Endstufentransistoren, ist bei 65% Aussteuerung erreicht.133

AB-Betrieb

Durch die bereits erwähnte gering gewählte Basis-
Emitter-Vorspannung im reinen B-Betrieb, betreibt man die Transistoren im unteren, nichtlinearen Bereich der Kennlinie. Dadurch ent-
stehen die in Abb X a) abgebildeten nichtlinearen Verzerrungen, welche auch als Übernahme- oder B-Verzerrungen bezeichnet werden. Erst eine geschickt gewählte Vorspannung von wenigen Milliampere kann diese, wie in Abb. X b), vermin-
dern, erhöht jedoch dadurch die Verlustleistung. In diesem Fall übernimmt je ein Transistor einen Teil der gegensätzlichen Halbwelle, wodurch die Übernahmever-
zerrungen verringert werden.134

Operationsverstärkerschaltungen

Operationsverstärker135 kommen als integrierte Schaltungen in einer Großzahl heutzutage produzierter Verstärkerschaltungen vor. Ein OpAmp ist ein universel-
er Gleichspannungsverstärker, mit zwei Eingängen und einem Ausgang. Davon ist ein Eingang jeweils als invertierend und ein weiterer als nicht-invertierend ausge-
legt.136 Abgesehen von den Anschlüssen für die Signalführung weisen OpAmp noch Pins für die Betriebsspannung von +/- 6 V bis +/- 18 V auf.

133 Vgl. Dickreiter (1979), S. 690
134 Vgl. Dickreiter (1979), S. 691
135 Im Folgenden OpAmp genannt.
136 Vgl. http://www.vias.org/mikroelektronik/oa_konzept.html
Der ideale OpAmp weist eine unendlich hohe Verstärkung und Bandbreite auf, der Eingangswiderstand ist unendlich hoch, wodurch der Eingangsstrom gleich Null wird. Der Innenwiderstand eines idealen OpAmps ist ebenfalls Null. In der Realität sieht es jedoch so aus, dass OpAmps Verstärkungsfaktoren von 10^4 bis 10^8 erreichen, Eingangswiderstände von 100 kΩ bis 1000 GΩ aufweisen und mit Innenwiderständen von $1 - 10 \, \Omega$ arbeiten. Weitere Kenngrößen, die einen OpAmp beschreiben, sind die Offsetspannung, die meist zwischen -10 mV und +10 mV liegt, die Bandbreite, welche meist mit 10^6 angegeben ist und die Slew Rate, welche je nach Bauart zwischen 0,5 und 1000 V/μs schwankt. Der letztere Parameter ist direkt mit der Bandbreite und der Ausgangsspannung verknüpft, da eine hohe Grenzfrequenz und eine hohe Ausgangsspannung auch eine umso höhere Anstiegs geschwindigkeit des OpAmps erfordern. In der Regel wird beim OpAmp mit einer Gegenkopplung gearbeitet, wodurch sich die verschiedenen Schaltungsvarianten ergeben, wie zum Beispiel die des Spannung folgers. Bei dieser einfachsten Variante wird der Ausgang mit dem invertierenden Eingang kurzgeschlossen, was einem Gegenkopplungsfaktor von $K = 1$ entspricht und in der Konsequenz u_2 mit u_1 gleichsetzt. Hierbei werden, entsprechend der Anodenbasis- oder Kollektorschaltung, verbesserte Übertragungseigenschaften und Ein- und Ausgangswiderstände erreicht, wodurch der Spannungsfollower zur Impedanzwandlung und Trennung zwischen Ein- und Ausgang eingesetzt werden kann.

Abb. 28: Grundschaltungen eines Operationsverstärkers 1

137 Vgl. Jüngling (1990), S. 11
138 Als Offsetspannung wird die geforderte Eingangsspannung bezeichnet, die benötigt wird, um den Ausgang auf 0 V Spannungsdifferenz zu bringen.
139 Slew Rate bezeichnet die Anstiegsrate der Ausgangsspannung beim Anlegen eines Rechtecksignals, meist in V/μs angegeben.
141 Vgl. Jüngling (1990), S. 11
Während beim Spannungsfolger durch die vollständige Gegenkopplung u_e gleich Null wird, kann durch einen Spannungsteiler, wie er beim invertierenden Verstärker angewandt wird, eine Herabsetzung der Gegenkopplung stattfinden. Der daraus resultierende Verstärkungsgewinn an der Ausgangsspannung u_a wird wie folgt berechnet:

$$v_u = 20 \cdot \log \left(1 + \frac{R_1}{R_2} \right) [dB]$$

Das Verhältnis der beiden Widerständen R_1 und R_2 ist also entscheidend für den Verstärkungsfaktor und kann auch zur Regelung als Potentiometer ausgeführt werden. Durch die Nutzung des invertierenden Eingangs zur Gegenkopplung und des invertierenden Eingangs gemäß seines Zweckes, erfährt die Ausgangsspannung keinerlei Phasendrehung. Vertauscht man diese Verhältnisse, erhält man am Ausgang eine Phasenänderung von 180°. Dies ist der Fall, beim invertierenden Verstärker, welcher durch eine Parallelschaltung von weiteren Widerständen zu R_1 auch als Summierverstärker in der Knotenpunktbildung eingesetzt wird. Die Verstärkung berechnet sich aus dem Quotienten von R_1 und R_2.

![Grundschartung eines Operationsverstärkers](image)

Abb. 29: Grundschaltungen eines Operationsverstärkers 2

Zur Verarbeitung von symmetrischen und unsymmetrischen Signalen kann die Schaltung des Differenzverstärkers angewandt werden. Für die Dimensionierung der Widerstände gilt folgende Gleichung:

$$u_2 = \frac{u_1}{2} \cdot \left[\frac{R_2 \cdot (R_3 + R_4)}{(R_1 + R_2) \cdot R_3} + \frac{R_4}{R_3} \right]$$

Das Besondere hierbei ist, dass Gleichspannungen, die an R_1 und R_3 anliegen von dem Operationsverstärker unterdrückt werden können. Das Maß für diese Gleich-taktunterdrückung wird für den jeweiligen Operationsverstärkertyp in der Common Mode Rejection Ratio angegeben. Durch die Anwendung des Differenzverstärkers...
stärkers können also symmetrische Eingänge realisiert werden, ohne, dass der Einsatz von Übertragern notwendig wird.142

3.2.3 Mischpulttechnik

Abb. 30: Der Altec 1567A - Eine mobile Mixing-Lösung in Röhrentechnik.

142 Vgl. Jüngling (1990), S. 12 ff.
143 Im Folgenden DAW genannt.
144 Vgl. Escott, Hawkins (1992), S. 15
Dennoch können diese Kleinmixer bei einer heutigen authentischen Produktion als Röhrenvorverstärker in Kombination mit einem Mischpult, den nötigen Charakter für die Tonaufnahme liefern. Der abgebildete Altec 1567A liefert mit eingebautem Übertrager laut Handbuch 97 dB Gain, was für Bändchen- und Tauchspulenmikrofone sehr hilfreich sein kann. Die Vorstufe des Altec 1567A ist einstufig mit je einer Hälfte einer 12AX7 Triode und ohne Gegenkopplung aufgebaut. Die Mono-Summe wird über eine zweistufig genutzte und gegengekoppelte 12AX7 Triode auf Linepegel gebracht und an die Endstufe mit einer 6CG7 Röhre weitergeleitet.\footnote{Vgl. 1567A Mixer Amplifier - Operating Instructions, S. 3} Es besteht also bei ähnlichen Geräten dieser Bauweise die Möglichkeit die Endstufe zu umgehen und somit einen 4-kanaligen, nicht gegengekoppelten Röhrenvorverstärker für die Nutzung mit einem Mischpult oder einer DAW zu erhalten. Da solche Geräte leider selten geworden sind und ausschließlich auf den Gebrauchtmärkten der USA auftauchen, ist für das aktuelle Projekt kein solcher Mixer verfügbar.

Abb. 31: Der RCA 76-B2 Konsolenmischer
gängen und zwei Summenabgriffen ausgestattet. Die Mikrofonvorverstärker sind einstufig mit RCA 1620147 Röhren und ohne Gegenkopplung aufgebaut. Im Anschluss an die Vorstufe wird die Spannung mit einem variablen Widerstand gedrosselt und daraufhin durch eine der beiden Summen „Program“ und „Monitor“ abgegriffen. Beide Summen werden weiterhin über vier RCA 1620 Röhren verstärkt und über einen Übertrager an die RCA 1621 Penta-

Ein Kollege von Phillips und heute bekannter Entwickler von Audioequipment war Bill Putnam. Obwohl Phillips viele Acetat-Master-Schallplatten mit einem Presto Plattenschneider selbst herstellte, arbeitete er mit Putnam für das Mastering zusammen und übersandte ihm seine Mastertapes, da er ihn als Engineer und für seine hervorragende Ausstattung mit Scully Plattenschneidern sehr schätzte.148 Putnam war bereits als Engineer tätig, als er begann Broadcast Konsolen zu modifizieren und seinen Anforderungen anzupassen. Hier bekam er die Inspiration für viele der Merkmale, die sich in seinen späteren Designs wiederfinden, wie die Kaskodenschaltung am Eingang, die Klangregelung über Gegenkopplungen und die Modularbauweise.149

147 Die RCA 1620 Röhren waren handselektierte Exemplare der weit verbreiteten RCA 6J7 Röhre.

148 Vgl. http://www.scottymoore.net/studio_sun.html

149 Vgl. AES (1989), An afternoon with Bill Putnam
Die von Putnam gegründete Firma Universal Audio150 ist unter anderem verantwortlich für die Produktion der 176, 1176 und LA-610 Geräte, welche heutzutage bei der Aufnahme und Mischung in vielen Studios als Standard gelten. Die wiederaufgelegten LA-610 Vorverstärker wurden jedoch in vielerlei Hinsicht an die Anforderungen moderner Tonstudios angepasst und sind unter anderem mit einer einstellbaren Gegenkopplung ausgestattet, was im Original nicht der Fall war.151

Möchte man in Deutschland ein authentisches Tonstudio für die Musik der 1950er eröffnen ist es von Vorteil die hiesigen Hersteller und Bautypen zu kennen, aus diesem Grund wird hier weiterhin ein Überblick zur damaligen Rundfunk und Tonstudiotechnik gegeben.

150 Später ist der Firmenname in UREI übergegangen.

151 Weiterführende Informationen zum LA-610 MKII können unter uaudio.com eingesehen werden.

Mit der Weiterentwicklung des V72 zum V76 war eine größere Verstärkung von bis zu 76 dB möglich, die im Bereich bis 34 dB durch vor dem Eingangsübertrager befindliche Widerstände erreicht wird und ab 34 dB durch eine einstellbare Ge-

152 Vgl. IRT (1950), Datenblatt V41 Mikrofon- und Hauptverstärker
153 Vgl. Dickreiter (1979), S. 311
genkopplung. Bis zu 34 dB wird also mit derselben Gegenkopplung gearbeitet, was dabei hilft den Geräuschspannungsabstand der Mikrofone über den Verstärkungsbereich konstant zu halten. Die Endstufe ist zweistufig und stark gegengekoppelt, um hier eine Übersteuerungsreserve zur Verfügung zu stellen.154 Mischpultsysteme, die auf dem V76 aufbauen sind aus der Zeit der Fünfziger und Sechziger Jahre nicht namentlich bekannt, Dickreiter beschreibt jedoch im Handbuch der Tonstudiotechnik von 1979 einige Anwendungen des V76 in Tonregieanlagen, wobei er auch auf die späteren Bauformen des V672 und die SITRAL Module von Siemens und deren Nutzung in Tonregieanlagen eingeht.155

Für die Ausstattung eines kleinen Tonstudios kommen große Mehrkanalmischpulte, wie von Klangfilm, RCA oder Universal Audio hergestellt, einfach aufgrund ihres hohen Anschaffungspreises nicht in Frage. Darüber hinaus sind diese Röhrenmischpulte, was die Restaurierung und Wartungsintensität angeht sehr zeitintensiv und erfordern sicherlich das Geschick eines Service-Technikers, der viel Erfahrung mit Röhrenverstärkern gesammelt hat. Viele der aufgezeigten Mischpultlösungen sind im Bezug auf heutige Verhältnisse auch zu unflexibel und würden zu viele Einbußen bei der Arbeit des Tonmeisters erfordern.

3.2.4 Aufnahmetechnik

Obwohl das Magnetband als hauptsächliches Aufnahmemedium in der Entstehungszeit der Rockabilly Musik bezeichnet werden kann, waren Engineers wie Sam Phillips von ihren Rundfunkerfahrungen her so geprägt, dass sie der Qualität anfangs nicht vertrauten und ausschließlich die mechanische Schallaufzeichnung auf Schallplatte wählten.156 Phillips nahm hierbei auf 16 Zoll Acetat Platten auf,

154 Vgl. IRT (1959) Braunbuch-Beschreibung V76, S. 1
wobei er die höhere Aufnahmegeschwindigkeit von 78 RPM wählte, obwohl zu seiner Zeit Umdrehungsgeschwindigkeiten von 33 RPM für die Zwischenspeicherung üblich waren.157 158 Da das sogenannte Direkschnittverfahren jedoch aus technischer und finanzieller Sicht nicht relevant für die heutige Einrichtung eines Tonstudios ist, wird hier nicht weiter darauf eingegangen. Als Mastermedium wurde die Schallplatte jedoch auch nach Phillips Umstieg auf Bandmaterial 1951 eingesetzt, wobei die Preise für Bandmaterial erst um 1956 so günstig wurden, dass er ohne finanzielle Rücksicht freiz damit umgehen konnte.159

Die Frage an dieser Stelle lautet, inwiefern das Aufnahmemedium Magnetband die Klangästhetik in den Fünfziger Jahren beeinflusst hat und was für technische Hintergründe dieser zugrunde liegen. Zunächst ist zu erwähnen, dass sich die Möglichkeiten für Mehrspuraufnahmen gerade in der Entstehungszeit des Rock’n’Roll von Mono-Maschinen, hin zu 3- oder 4-Spurrekordern entwickelt haben. Bei der Mono-Aufnahme sind die Mischverhältnisse bereits bei der Aufnahme so zu setzen, dass sie endgültig sind. Bei der Aufnahme auf Zweispurmaschinen besteht die Möglichkeit entweder eine sinngemäße Gruppierung der Aufnahmesignale auf die zwei Kanäle vorzunehmen, wie z.B. Kontrabass, Gitarre auf Kanal 1 und Gesang auf Kanal 2. Auf diese Weise können bei einem späteren Mixdownprozess die Pegelverhältnisse neu gesetzt und Klangveränderungen vorgenommen werden. Voraussetzung hier ist, dass eine weitere Bandmaschine oder ein anderes Mastermedium, sei es digital oder mechanisch, verfügbar ist. Oder aber man zeichnet den fertiggestellten Mix direkt bei der Aufnahme auf, ohne Rücksicht auf eine Trennung der Instrumentalgruppen. Bei Monoproduktionen, wie es in der Musik der Fünfziger Jahre oft der Fall ist, ergibt sich hier ein vergrößerter Rauschabstand von 6 dB. Bei Mehrkanaltonaufnahmen ab 3 Spuren kann die Trennung der Instrumentengruppen weiter gesteigert werden, wobei es hier durch die Bestückung der Mischpulte mit drei Summenabgriffen L-C-R, üblich war diskrete Lautsprecher für die jeweiligen Spuren im Regieraum anzubringen.160

\begin{footnotesize}
\begin{itemize}
\item[157] Vgl. Escott, Hawkins (1991), S. 15
\item[158] Phillips wollte hierdurch Qualitätsverbesserungen im Klang erreichen. Die Erhöhung der Umdrehungsgeschwindigkeit entspricht der Erhöhung der Abtastrate in der Digitaltechnik.
\item[159] Vgl. Escott, Hawkins (1991), S. 18
\item[160] Vgl. \url{http://www.aes.org/aeshc/docs/mtgschedules/109conv2000/109th-vinyl-report-1.html}
\end{itemize}
\end{footnotesize}

Drei klangliche Auswirkungen, die der Bandaufzeichnung aufgrund ihres Funktionsprinzips innewohnen, sind ein erhöhter Rauschpegel, Verzerrungen und die Dämpfung hoher Frequenzen. Diese Faktoren sind von vielen gegebenen Eigenschaften der jeweiligen Bandmaschine abhängig, können aber durch die Auswahl der Bandgeschwindigkeit, die Einstellung des Bandflusses bzw. Arbeitspunktes und das Bandmaterial beeinflusst werden.

Das Rauschverhalten des Bandmaterials ist grundsätzlich erst Mal von der Vormagnetisierung abhängig. So wirkt sich die HF-Vormagnetisierung negativ auf das Ruhe- und Betriebsrauschen im Bereich hoher Frequenzen aus. Die Gleichstromvormagnetisierung hingegen bewirkt durch immanente Ungleichheiten bei der Vormagnetisierung und die Rauheit des Bandes Rauschen in Form eines tiefrequenten Polterns.162

161 Vgl. Dickreiter (1979), S. 539
162 Vgl. Dickreiter (1979), S. 244
Die Verzerrungen bei einer Bandaufnahme sind durch die symmetrische Arbeits-
kennlinie von magnetischen Tonträgern vor allem kubischer Art und somit unge-
radzahlige Vielfache der Grundfrequenz. Bei Bandmaschinen mit Gegentakt-
Oszillator zur Vormagnetisierung kann der Klirrfaktor k_3 gesenkt werden. Band-
maschinen, die noch mit einer veralteten Gleichstrommagnetisierung arbeiten,
weisen eine Verschiebung der Arbeitskennlinie und somit einen größeren Anteil
von k_2 Verzerrungen auf.163 Die untenstehende Abbildung zeigt das komplexe Zu-
sammenspiel der verschiedenen klanglichen Anforderungen und daraus resultie-
rende Werte, auf die die Bandmaschine bei der Einmessung gebracht werden
muss.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Zusammenhang einiger Bandeigenschaften und dem gewählten Vormagnetisierungsstrom}
\end{figure}

Zu diesen gegebenen technischen Einflüssen auf das klangliche Ergebnis kommt
hinzu, dass in der Anfangszeit der Bandtechnik keine brauchbaren Rauschunter-
drückungssysteme verfügbar waren. Eine mögliche Lösung für einen verbesserten
Rauschspannungsabstand bestand darin, mit einem erhöhten Pegel auf das Band
aufzuzeichnen. Hierbei wird in Kauf genommen, dass das Bandmaterial sein klang-
lisches Verhalten bei hohen Pegeln hin zu einer Zunahme des Klirrfaktors und einer

163 Ebenda

Die bisherige Erläuterung der klanglichen Einflüsse des Mediums Band auf die Musik der Fünfziger Jahre erklärt, warum dieses aus einer Produktionsumgebung für authentische Musik aus eben dieser Zeit nicht wegzudenken ist. Wenn man allerdings hier eine Kongruenz zu alten, wieder aufgelegten Aufnahmen aus dieser Zeit herzustellen versucht, ist stets zu beachten, dass das Bandmaterial, aus dem die Remasterings der später veröffentlichten CDs erstellt wurden, sehr lange Lagerzeiten aufwiesen, meist ohne Umbauvorgänge. Dies führt zum Auftreten des Kopiereffekts und zu Echolösungen, was Sam Phillips unter dem Begriff \textit{Shadow Distortion} zusammenfasst und womit der magnetische Einfluss benachbarter Bandwicklungen auf die Originalaufzeichnung gemeint sind.\footnote{Vgl. http://mixonline.com/ar/audio_sam_phillips/}

Hinzu kommen weitere klangliche Verluste durch die Vielzahl an Bandgenerationen und die weitere Zunahme des Klirrfaktors.

\section*{3.2.5 Effekte}

In der Rock'n'Roll Musik gibt es eine gewisse Anzahl von Klangeffekten, die zur Assoziation mit der Epoche beitragen und bei der Aufnahme oder der Postproduktion bedacht werden sollten.

\textbf{Hallraum}

eine Nachzahlzeit von 2,5 s, Freiheit von Flatterechos, eine hohe Eigenfrequenzdichte, Frequenzunabhängigkeit des Nachhalls bei mittleren Frequenzen und geringer Störschall.166 Um eine hohe Eigenfrequenzdichte zu erhalten, wird ein Gesamtvolumen von 50 m³ empfohlen, um einen niedrigen Störschall zu erreichen wird eine sechsseitige, federnd aufgehängte, schwere Bauschale empfohlen. Wichtig ist auch, dass möglichst wenig parallele Flächen auftreten, um die Anhäufung von stehenden Wellen zu vermeiden. Weiterhin wird der Tip gegeben, den Lautsprecher zur Wand zu drehen, um ein sogenanntes Pre-Delay und eine damit einhergehende Entkopplung des Halls vom Direktsignal zu erhalten.167

Was in der Theorie gewünscht ist, ist jedoch in der Realität selten realisierbar. So kommt es, dass Hallräume, die diesen Anforderungen entsprechen relativ selten anzutreffen waren, vor allem, wenn es in den Bereich der Musikproduktion geht. Wenige Tonstudios, wie z.B. Abbey Road, hatten die Kapazitäten und die finanziellen Ressourcen einen speziellen Raum hierfür zu entwickeln. Meist wurde ein unbenutzter Raum, mit langem Nachhall, wenn möglich gekachelt, mit den nötigen Geräten ausgestattet und während Aufnahmen oder Mischungen für solche Zwecke genutzt.168169

Für das Black Shack Studio soll der unter dem Studio befindliche Gewölbekeller für diese Zwecke genutzt werden. Hierfür wurde bereits ein Durchbruch von der Regie in den Keller geschaffen, welcher für die Kabelführung genutzt werden kann. Aufgrund der hohen Luftfeuchtigkeit kann der Aufbau jedoch nicht permanent stehen bleiben, sondern muss für spezielle Aufnahmesessions auf- und wieder abgebaut werden. Die Maße des Raumes betragen 5 m x 5,5 m x 3 m, wodurch sich unter Berücksichtigung der Wölbung ein ungefähres Volumen von 55 m³ ergibt. Die Beschaffenheit der Wände und des Bodens ist rauer Stein. Durch die Wölbung der Decke wird eine der Anforderungen bezüglich weniger paralleler Flächen im Raum erfüllt. Zur An-
regung des Raumes wird ein Aktivlautsprecher benutzt, die Aufnahme des Hallsignals geschieht über zwei C4 Druckempfänger der Firma Studio Projects. Testaufnahmen im Hallraum konnten bisher nicht durchgeführt werden, die Klatschprobe ergab jedoch einen klaren, mittleren bis kurzen Nachhall, der wenig Flatterechos aufweist. Der Hallraum kann somit ergänzend zur Hallplatte und dem Federhall für die Erzeugung einer kurzen und dichten Ambience eingesetzt werden.

Federhall

Die ersten Hallgeräte, die mit einer Torsionsfeder arbeiteten, wurden von der Firma Hammond gefertigt und waren durch die starken Flatterechos, Klangfärbungen und einer ungeeigneten Nachhallcharakteristik aus technischer Sicht nicht für die professionelle Studioanwendung geeignet. Dennoch wurden derartige Geräte vor allem in der Musikproduktion eingesetzt, falls für diesen Zweck kein Hallraum oder ein hochwertigeres Hallgerät zur Verfügung stand. Der Einsatz eines solchen Federhalls in heutigen Produktionen kann sich also keinesfalls einer Assoziation mit Lo-Fi oder Trash-Musik entziehen, was jedoch gerade bei der rauen und ungehobelten Musik der Fünfziger- und Vierzigerjahre von Vorteil sein kann.

Professionelle Varianten der genannten Hammond-Variante wurden vom österreichischen Hersteller AKG produziert. Der bekannteste Vertreter der Produktserie BX, ist das AKG BX 20 Hallgerät, welches mit einer patentierten Kompensationschaltung arbeitet und hierdurch Flatterechos minimiert. Auch die Nachhallzeit kann bei diesem Gerät durch eine Gegenkopplung des Ausgangssignals zwischen 2,3 und 4,5 s geregelt werden.¹⁷⁰

Bandecho

Führt man das Ausgangssignal einer Bandmaschine mit verringertem Pegel auf den Eingang zurück, entsteht durch den mechanischen Versatz von Schreib- und Lesekopf eine Art Nachhall. Aus technischen Gesichtspunkten ist das Bandecho für den Einsatz als Hall in einer Tonproduktion nicht geeignet, da die simulierten Raumreflexionen, die bei einer Rückführung des Ausgangssignales auf den Eingang entstehen, eine zu geringe zeitliche Dichte aufweisen.¹⁷¹

¹⁷⁰ Vgl. Akg (n.a.), Bedienungsanleitung des AKG BX 20
¹⁷¹ Vgl. Dickreiter (1979), S. 179
Betrachtet man das Prinzip der Verzögerung jedoch isoliert und verringert den rückgeführten Pegel soweit, dass nur eine oder einige wenige Wiederholungen hörbar sind, kann mit einer Bandmaschine ein wohlklingender Echoeffekt erreicht werden, welcher auch Slap-Delay genannt wird. Sam Phillips setzte dieses Gestaltungsmittel als erster Engineer exzessiv ein und konnte somit kleine Ensembles mit einer klangliche Fülle versorgen, die ansonsten Big Bands und Orchestern vorbehalten war. Bei einem solchen Einsatz musste natürlich das Zusammenspiel mit dem Tempo des zu spielenden Stückes bedacht und in die Auswahl der Bandgeschwindigkeit einfließen, durch die zwei Verzögerungszeiten zur Verfügung standen.

„The studio’s tape delay and Phillips’ miking techniques enabled Elvis, Scotty, and Bill to create a rich texture from three pieces. [...] The Echo fattened the sound, giving some of the faster numbers a compelling syncopation“

Durch die Aufnahme und Wiedergabe auf einer Bandmaschine werden auch weitere gewünschte Effekte, wie minimale Gleichlaufschwankungen, Bandsättigung und Frequenzgangänderungen, hervorgerufen, welche den Charakter eines Bandechos schließlich komplettieren.

172 Die Bezeichnung rührt wahrscheinlich daher, dass das Echo kurz auf das Originalsignal impulsartig, wie ein Klatschen folgt. Andere gängige Bezeichnungen sind Slap-Echo oder Slapback Echo.
173 Diese Verzögerungszeiten bewegen sich je nach Bandmaschine zwischen 75 und 250 ms.
174 Escott, Hawkins (1991), S. 68
175 Vgl. Sound&Recording 04/09 S.117
Nachhallplatte

Bis zum Jahr 1972 war die Nachhallplatte 140, exklusiv hergestellt durch EMT\footnote{Elektromesstechnik Wilhelm Franz}, das einzige Gerät, was den bereits genannten, hohen Anforderungen des Studiobetriebs standhalten konnte. Das Funktionsprinzip ist auch hier wieder, wie beim Federhall, das eines elektromagnetischen Treibers, der die Spannungssignale in Stoß- und Schubbewegungen umsetzt, welche mechanisch direkt an eine fest eingespannte und gestimmte Stahlplatte weitergegeben werden. Über Piezo-Tonabnehmer werden an verschiedenen Orten auf der Platte die Schwingungen aufgenommen und an einen Endverstärker weitergeleitet.\footnote{Weiteres zum Funktionsprinzip der Hallplatte wird im Kapitel 4.2.6 erläutert.}

Abb. 40: Das Innenleben einer EMT 140 Nachhallplatte
4 Praxisteil A: Einrichtung eines Tonstudios nach den aufgeführten Gesichtspunkten

4.1 Technische Anforderungen

4.1.1 Definition der Ziele

Während und nach diesen Aufnahmen war es, dass Stefan mich auf seine Idee aufmerksam machte, in seinem Band-Proberaum ein kleines, aber authentisch ausgestattetes Studio aufzubauen. Erst rund ein Jahr später war Stefans Mikrofonsammlung und unsere Ideen reif genug, um diese Idee in die Tat umzusetzen. Wir trafen uns vorab zu einigen Treffen und Besprechungen und beschlossen folgende Ziele mit dem Studio zu verfolgen:

1. Wenn das Genre es erlaubt, sollen die Musiker simultan und in einem Raum zusammen einspielen, um die unmittelbare Atmosphäre und Rauheit der Rock’n’Roll Musik möglichst perfekt einzufangen.
2. Die Lautstärkeverhältnisse der Aufnahme sollen bereits im Raum vorherrschend sein, so dass ein separates Monitoring möglichst nur für den oder die Sängerin nötig wird und eine Ausgewogenheit für die Signale der Mikrofone gewährleistet ist.
3. Die Ausstattung soll, wenn möglich aus den relevanten Epochen der 1940er bis 1960er Jahre stammen. Falls dies finanziell oder praktisch nicht tragbar sein sollte, ist der Einsatz äquivalenter moderner Geräte oder digitaler
Hilfsmittel erlaubt. Es gilt der vielzitierte Leitsatz: „Das Ergebnis heiligt die Mittel.“

6. Das Studio soll modular aufgebaut sein, um möglichst flexibel zu bleiben. So sollen die Vorverstärker und die Klangbearbeitung als Einzelmodule ausgeführt sein, das Mischpult soll überwiegend als Line-Mixer verwendet werden, um möglichst viele Klangfarben bieten und stufenweise aufstocken zu können.

7. Testaufnahmen im Vorfeld mit Bands verschiedener Genres, sollen den Workflow auf die Probe stellen und gegebenenfalls Schwachstellen aufdecken.

9. Das Black Shack Studio ist keine Insel. Im Hinblick auf die aktuelle Recording-Kultur, soll auch ein digitales Mehrspursystem mitsamt all seiner Nachbearbeitungsmöglichkeiten eingesetzt werden, um Kundenwünsche zu bedienen, die heutzutage als Standard angesehen werden und bei denen die authentische Technik an ihre Grenzen stößt.

4.1.2 Die Auswahl der passenden Studioausstattung

Zu Beginn des Projekts war ein großer Teil des benötigten Equipments bereits vorhanden, darunter fallen sämtliche Mikrofone, das Harddisk-Recording System, das Mischpult und die Bandmaschine. Im Folgenden eine Auflistung des zu Beginn vorhandenen Equipments:

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynacord</td>
<td>MCX 16.2 Analogmischpult</td>
</tr>
<tr>
<td>Dynacord</td>
<td>Mini Echo Bandecho</td>
</tr>
<tr>
<td>Studer Revox</td>
<td>A77 MK IV ¼” Bandmaschine</td>
</tr>
<tr>
<td>RCA</td>
<td>44-A Bändchenmikrofon</td>
</tr>
<tr>
<td>RCA</td>
<td>77-DX Bändchenmikrofon</td>
</tr>
<tr>
<td>Beyerdynamic</td>
<td>3 x M 160 Bändchenmikrofon</td>
</tr>
<tr>
<td>Sennheiser</td>
<td>MD 441 Tauchspulenmikrofon</td>
</tr>
<tr>
<td>AdvancedAudioMicrophones</td>
<td>CM-47/CM-67 Kondensatorm., Röhre</td>
</tr>
<tr>
<td>Neumann</td>
<td>KM84i Kondensatormikrofon</td>
</tr>
<tr>
<td>Shure</td>
<td>545 ES Unidyne III Tauchspulenmikrofon</td>
</tr>
<tr>
<td>Studio Projects</td>
<td>C4 Niere/Kugel Kondensatormikrofon</td>
</tr>
<tr>
<td>Shure</td>
<td>SM7B Tauchspulenmikrofon</td>
</tr>
<tr>
<td>Audix</td>
<td>17 Tauchspulenmikrofon</td>
</tr>
<tr>
<td>Audix</td>
<td>D6 Tauchspulenmikrofon</td>
</tr>
<tr>
<td>Schoeps</td>
<td>2 x CMC 64 Kondensatormikrofon</td>
</tr>
<tr>
<td>Apple</td>
<td>Macbook Pro 2,2 GHz</td>
</tr>
<tr>
<td>M-Audio</td>
<td>1814 18-Kanal Audio Interface</td>
</tr>
<tr>
<td>Universal Audio</td>
<td>UAD-2 Solo Laptop DSP Karte</td>
</tr>
<tr>
<td>Sonnet</td>
<td>Expresscard E-Sata Controller</td>
</tr>
<tr>
<td>Presonus</td>
<td>2 St. Digimax FS 8 CH Vorverstärker</td>
</tr>
<tr>
<td>Behringer</td>
<td>T1953 Tube Vv. m. Steven Sank Mod.</td>
</tr>
<tr>
<td>Universal Audio</td>
<td>LA-610 MKII Vorverstärker + Kompressor</td>
</tr>
<tr>
<td>Telefunken</td>
<td>2 x V672 Vorverstärker</td>
</tr>
<tr>
<td>Siemens</td>
<td>2 x V276a Vorverstärker</td>
</tr>
<tr>
<td>TAB</td>
<td>2 x V376b Vorverstärker</td>
</tr>
<tr>
<td>BFE</td>
<td>MK5B Filtek Equalizer</td>
</tr>
</tbody>
</table>

Bei der Betrachtung der Liste fällt auf, dass das Mischpult für professionelle Zwecke ungeeignet zu sein scheint, es kann jedoch anfangs für das Monitoring und die Übergabe der Linesignale aus den Vorverstärkern eingesetzt werden. Die Bandmaschine ist ebenfalls im Bereich der semiprofessionellen Einsteiger einzuordnen,
was durch die unsymmetrischen Anschlüsse und die geringen Einstellmöglichkeiten deutlich wird. Da sich das Tonstudio jedoch nicht der technisch perfekten Aufnahme, sondern dem Sound der Fünfziger Jahre verschieben hat, ist der Einsatz ungewöhnlicher Mittel durchaus möglich und eventuell nötig.

Weiterhin waren zum Anfangszeitpunkt des Projekts nur wenige Halleffekte vorhanden, was die Idee nahe brachte, Nachhallplatte, Federhall und Hallraum selbst zu konstruieren und in das Studio zu integrieren.

Durch die vorangehende Recherchearbeit zum Thema Rundfunkmodule wurden die folgenden Vorverstärker als klanglich passend und finanziell realisierbar ausgewählt:

Telefunken V672

Der V672 ist als Mehrzweckverstärker ausgelegt und zugehörig zur Nullosm-Knotenpunkttechnik. Dadurch weist er einen erdfreien, sehr niederohmigen Eingang mit einer Impedanz von <5 Ω auf, was jedoch durch vorgeschaltete Eingangswiderstände erhöht werden kann. Grundsätzlich ist eine Nutzung als Sammelschienenverstärker, Trenn- und Verteilverstärker, Summen- und Differenzverstärker, aber auch als einfacher Pegelverstärker möglich.179 In diesem Fall soll der Pegel von Mikrofonsignalen verstärkt werden, wodurch sich beim V672 der Einbau von schaltbaren Eingangs- und Gegenwiderständen ergibt. Der Bauaufwand ist bei diesem Gerät somit deutlich höher, wie bei speziell für den Einsatz der Pegelverstärkung gebauten Geräten, andererseits lassen sich hierdurch mehr Parameter selbst bestimmen, die die Flexibilität des Geräts steigern. Der V672 in seiner Urform weist einen voll transistorisierten Aufbau mit Siliziumtransistoren auf.180 Diese Vorverstärker kann man vergleichsweise günstig gebraucht erwerben und damit zwei hochwertige Geräte aufbauen, die sich klanglich sehr gut für die Aufnahme von Gitarren eignen. Sie weisen eine sehr gute Mittenwiedergabe und einen soliden Bassbereich auf.

179 Vgl. Dickreiter (1979), S.408
180 Ebenda S. 331
Abb. 41: Prinzipschaubild des V672 Verstärkers mit R_6 als festen inneren Gegenwiderstand

Siemens V276a

TAB V376b

\(^1\) Silizium-Transistoren-Leiterplattentechnik
\(^2\) Vgl. Siemens (1967): Geräteanleitung des V276a

BFE MK5b

Das Equalizer-Modul MK5b basiert auf einem Originaldesign, das bereits vom Schweizer Hersteller Filtek in den Siebziger Jahren vorgestellt wurde. Der Equalizer ist mit drei Frequenzbändern ausgestattet, die über 12 Frequenzen und zwei Einstellungen für die Güte schaltbar sind.\(^{183}\) Da hierzu auch keinerlei Schaltunterlagen vorliegen, wurden die Platinen auf die Bauteiltypen untersucht. Dabei fiel auf, dass die weit verbreiteten Standard-Operationsverstärker vom Typ Texas Instruments NE5532AP, TL072BCP und LM1458 verbaut sind.

Die MK5b Equalizer sollen entweder zur Entzerrung in den Einzelkanälen, hauptsächlich jedoch zur Klanggestaltung auf der Mischpultsumme verwendet werden. Schade ist, dass die Geräte nicht mit Shelving Filtern ausgestattet sind, was in der Summenbearbeitung sehr erwünscht wäre. Stattdessen muss hier mit breitbandigen Glockenfiltern und dem Hoch- bzw. Tiefpassfilter gearbeitet werden.

4.1.3 Erstellung eines Grundsetups

Abb. 42: Signalführung der analogen Studioleitungen

Zur besseren Planbarkeit der möglichen Arbeitsweisen wurde im Vorhinein ein Prinzipschaubild erstellt, welches eine Übersicht über die beteiligten Komponenten und die nötige Verkabelung aufzeigt. Darauf ist der modulare Einsatz der Vorverstärker zu erkennen, als auch die Tatsache, dass das Dynacord Pult lediglich als Line-Mixer verwendet wird. Dies ist aus dem Grund der kleinstmöglichen Klangfärbung gewählt worden und gibt die Möglichkeit das Mischpult in seinem optimalen Arbeitsbereich anzusteuern. Weiterhin wird aus dieser Übersicht deutlich, dass eine parallele Aufnahme auf Bandmaterial und Festplatte möglich sein wird. Die Hall- und Delay-Effekte werden auf seperaten Eingangskanälen des Pults zurück-
geführt, so dass sie bei einer Mehrspuraufnahme einzeln aufgezeichnet und später hinzugemischt werden können.

4.2 Selbstbau von Netzteilen und Peripherie

4.2.1 Die Integration der Rundfunkmodule

All diese Punkte summierten sich mit der Anforderung eines mobilen und flexiblen Setups, zu einem Platzproblem beim Einbau der Geräte in die Leergehäuse. Zur besseren Vorstellung wurde eine Skizze mit einem einfachen 3D-Programm erstellt, was sehr schnell zu einem Ergebnis bei der Platzeinteilung führte. Um kurze Wege beim Signalfluss zu gewährleisten, wurden die Elemente die zur Ein- und Ausgangsschaltung zugehörig waren auf kleinen Platinen direkt zwischen den Modulen und den Ein- und Ausgangsbuchsen untergebracht. Mittig hinten im Gehäuse wurde dann die gesamte Spannungsversorgung, sowohl 24V als auch 48V, eingeplant.

184 Google Sketchup ist eine kostenlose 3D-Modeling Software zur Erstellung von einfachen Modellen im Architektur- und Planungsbereich.

So wurden die Platten teilweise in ihrer Form verzogen und speziell bei den Geräten, die in der Höhe der Frontplatte sehr nahe kamen, blieb nur ein kleiner Steg Aluminium oben und unten übrig, was die Stabilität der Konstruktion beeinträchtigte. Die Netzteile für alle Module wurden identisch konstruiert und mit einem Transformator bestückt, der einen Ausgangsstrom von 416 mA liefert.

\(^{185}\) DXF steht für Drawing Interchange Format und ist ein proprietäres Dateiformat des AutoCAD Herstellers Autodesk. Das Format ist derart verbreitet, dass Dritthersteller, wie Adobe ihre Zeichensoftware ebenfalls für diese Schnittstelle lizensieren.
Abb. 45: Schaltbild des 24 V Netzteils und der 48 V Spannungsversorgung
Dies ist bei einem maximalen Stromverbrauch von 100 mA pro Modul ausreichend überdimensioniert, um auch die nötigen Relais für die Umschaltungen zu versorgen. Die verwendete Schaltung für die 24 V Gleichspannungsversorgung stellt eine Grundschaltung für linear geregelter Netzteile dar und wird weitgehend identisch in den Datenblättern entsprechender Spannungsregler, wie dem hier eingesetzten IC7824 empfohlen. Hier folgt auf den Silizium-Brückgleichrichter ein erster Kondensator mit hoher Kapazität von 1000 µF zur ersten Glättung der Gleichspannung und um eventuelle Restwelligkeiten zu minimieren. Der Spannungsregler übernimmt die Aufgabe bis zu einem maximalen Strom von 1A auch bei Netz- und Lastschwankungen eine stabile Spannung zu liefern.

Die 48V Spannungsversorgung funktioniert über eine klassische Spannungsverdopplerschaltung186 von 24 V auf ca. 72 V DC, daraufhin wird diese über die in Reihe geschalteten Zener-Dioden auf 48V begrenzt. Der Transistor Q1 stabilisiert die Spannung bei Laststromschwankungen, R1 und Q4 dienen der Glättung der Gleichspannung.

186 In DIN 41761 als Zweipuls-Verdopplerschaltung D2 definiert.
Zwischen dem Emitter von Q1 und Masse liegen jetzt stabilisierte und gesiebte 48 V Spannung an und könnten zwischen den beiden symmetrischen Mikrofonleitungen über zwei 6,8 kΩ Widerstände und der Signalmasse angelegt werden. Wie eingangs erwähnt lag hier jedoch der Fokus auf der Betriebssicherheit bei der Arbeit mit passiven Bändchenmikrofonen und aus diesem Grund wurde der darauffolgende Schaltungssteil zum einstellbaren Spannungsanstieg verwendet.187 Die Funktionsweise dieser sogenannten \textit{Ramped Phantom Power} ist so, dass Q1 und Q2 zusammen einen Trennschalter bilden, welcher die regulierte Spannung an der Last an- und ausschaltet. Der obere der beiden Transistoren ist hierbei der stromführende Teil, während der untere für die Funktion des Spannungsanstiegs verantwortlich ist. Die Zeit des Spannungsanstiegs ist direkt von den Werten R3, R4 und CXs abhängig.

Für den Selbstbau wurde hier mit den Werten 1 MΩ für R3/R4 und 10 µF für CX gearbeitet, was zu einer Anstiegszeit von ca. 6 Sekunden führt.188 Zur Unterdrückung von Gleichspannungsanteilen am Eingang des Mikrofonverstärkers wurden hier 220 µF Kondensatoren angebracht.

Abb. 47 zeigt die eingesetzten Relais im Signalweg der Rundfunkmodule, wobei das Relais für die 48V Phantomspannung bereits in Abb. 46 abgebildet war und jeweils zwischen R3 und R4 umschaltet. Der Einsatz von Relais hat gegenüber mechanisch ausgelösten Kippschaltern den Vorteil, dass kürzere Wege für die signalführenden Leitungen realisiert werden können und grundsätzlich eine galvanische Trennung zwischen Schaltern und Signal vorliegt.

\footnotesize
\begin{itemize}
\item 187 Vgl. http://www.barthman.de/rampedphantom.html
\item 188 Vgl. http://www.diyfactory.com/projects/softstartphantom/softstartphantom.htm
\end{itemize}
4.2.2 Praktische Durchführung des Selbstbaus

Um die mechanischen Arbeiten, das Löten und erste Messungen bewerkstelligen zu können, ist eine Werkstattumgebung Voraussetzung. Hier sollten Utensilien wie eine professionelle Lötstation, Multimeter, ein Oszillosgraph und allgemeines Werkzeug vorhanden sein, damit der Selbstbau reibungslos erfolgen kann.

Abb. 48: Werkstatt während der Fertigstellung des V672 Verstärkers

Abb. 49: Überprüfung der 24 V Gleichspannung mit einem Fluke Oszilloskop

Abb. 50: Zwei vorbereitete Netztretplatinen (oben links), Einpassung des V376b Verstärkers (oben rechts), bestücktes V276a Gehäuse mit Netztretplatine (unten links), fertig gestelltes MK5b Gehäuse (unten rechts).

\(^{189}\) Electroacoustics Toolbox und weitere Software des Herstellers Faber Acoustical kann unter \url{http://www.faberacoustical.com/} als 14-tägige Testversion heruntergeladen werden.
4.2.3 Messungen

Ergänzend zu den einfachen Funktionstests mit einem dynamischen und einem Kondensatormikrofon, wurde eine einfache und anschauliche Überprüfung der Gerätefunktionen angestrebt. Hierbei bestand das Ziel nicht darin, Messwerte die herstellerseitig angegeben waren zu überprüfen, denn hierzu wären spezielle Messvorrichtungen nötig gewesen. Vielmehr war es wichtig zu untersuchen, ob die Geräte ihren Zweck im späteren Studioalltag erfüllen würden. Hierbei war die Software Electroacoustics Toolbox für Funktionstests und -prüfungen geeignet, das Programm Fuzzmeasure Pro190 bot sich für die Messung der Frequenzgänge an. Hiermit wurden Frequenzdiagramme aller eingesetzten Vorverstärker erstellt, um die klanglichen Unterschiede technisch fassbar zu machen und eine Vergleichsgrundlage zu liefern.

Zunächst wurde das Klirrverhalten der Vorverstärker mit ET überprüft, wozu ein Signalgenerator mit einem 1 kHz Sinuston ausgegeben und das Messsignal mit einer FFT-, Terzband- und Oszilloskop-Anzeige dargestellt wurde.

Die Messungen mit dem Behringer Mikrofonvorverstärker T1953 zeigten eindrucksvoll, dass der Vorverstärker im Normalgebrauch zwar schon geradzahlige Vielfache der Grundfrequenz hinzufügt, aber dieser erst mit Einsatz des „Warmth“ Reglers, deutlich an Pegel gewinnen.

190 Fuzzmeasure Pro kann als 14-tägige Testlizenz vom Hersteller SuperMegaUltraGroovy unter http://supermegaultragroovy.com/products/FuzzMeasure/ heruntergeladen werden.

Anschließend wurde der Universal Audio LA-610 MKII Vorverstärker auf sein Kliirrverhalten und seinen Frequenzgang untersucht. Die ersten drei Abbildungen zeigen den Vorverstärker in den gängigen Extremeinstellungen. Hierbei wurde die Gainregelung jeweils auf -9 dB, 0 dB und +9 dB eingestellt. Auch hier ist es schön sichtbar, wie die geradzahligen Vielfachen des Grundtones mit steigender Gain-Einstellung zunehmen. Im Vergleich zum Gerät von Behringer sind allerdings deutlich weniger ungeradzahlige Vielfache messbar. Diese steigen erst deutlich an,

\(^{191}\) Sämtliche Messungen in Fuzzmeasure Pro wurden mit einer Abtastrate von 96 kHz und mit einem Sinus Gleitton von 1 Hz bis 30 kHz hergestellt. Da Electroacoustics Box diese Abtastrate nicht vollständig unterstützt, musste hier mit 44.1 kHz für die FFT-, Terzband- und Oszilloskopanzeige gearbeitet werden.
wenn man mit dem Level-Knob die Ausgangsverstärkung bis zu einem voll ausschlagenden VU-Meter anhebt und den Ausgangstransformator bzw. die Endstufenschaltung in die Sättigung fährt.

Abb. 53: UA 610-MKII mit -9 dB (l. oben) 0 dB (r. oben) und +9 dB Gain, Starke Anhebung des Ausgangspegels mit hörbar unangenehm verzerrten Ergebnis (r. unten).

Die Plots der jeweiligen Frequenzgänge zeigen, dass der Vorverstärker in allen Einstellungen eine leichte Bassanhebung bei 20 Hz aufweist, was die Erfahrung bestätigt, dass das Gerät meist mit dem Tiefen-Shelving Filter bei -1,5 dB betrieben wird. Auch der Einfluss der Vorverstärkung auf den Höhenfrequenzgang wird hier sichtbar, welcher bis zu 0,5 dB bei der höchsten Vorverstärkung absinken kann und sicherlich großen Einfluss auf den subjektiven Klangeindruck der „Wärme“ hat. Die nahezu zerstörte Linearität des Frequenzgangs zeigt Einstellung Nr. 4, welche eine weitergehende Höhenabsenkung und einen „verbogenen“ Tiefenfrequenzgang aufweist. Sehr auffällig ist hier auch der steigende Gleichanteil im Ausgangssignal.
Generell sind die Einflüsse auf den Klang recht minimal, aber es ist zu überdenken, ob die eventuell einbauten Hoch- und Tiefpassfilter der Rundfunkmodule zu einem, späteren Zeitpunkt extern schaltbar gemacht werden sollten, damit sich mehr klangliche Möglichkeiten mit den Geräten ergeben.

![Frequency Response (1/12 Octave Smoothing)](image)

Abb. 55: Prinzipeller Vergleich der Frequenzgänge von V672, V376b und V276a und zweier Betriebsmodi des V672 Verstärkers

Beim Vergleich der gemessenen Ergebnisse mit den tatsächlichen Klangindrücken bei der Verwendung der Geräte fällt auf, dass die Messungen nur ein Stück weit zur Einschätzung beitragen können. Dies ist zum einen auf das Thema der Spannungsanpassung und der damit einhergehenden Impedanzunterschiede zu einem echten Mikrofon zurückzuführen. Die Ausgangsimpedanz des verwendeten Audiointerfaces lag bei 150 Ω, die Eingangsimpedanzen der Vorverstärker je nach Verstärkung zwischen 1 und 2 kΩ. Ausgangsseitig weisen die Vorverstärker sehr niederohmige Werte von 45 – 50 Ω auf, die Eingangsimpedanz des Messverstärkers liegt wiederum mit 10 kΩ hoch genug für eine korrekte Spannungsanpassung. Die theoretisch korrekt gewählten Impedanzen stellen sich jedoch bei manchen Modulen als unpassend heraus und sind vor allem beim Betrieb mit Line-Signalen zu beachten.192 Doch auch Mikrofone, wie das RCA 77 oder 44 können durch ihre

charakteristischen Impedanzanhöhungen, verschiedene klangliche Ergebnisse, je nach Kombination mit dem jeweiligen Vorverstärker hervorbringen.

Die andere Komponente ist die zeitliche, die mittels Frequenzdiagrammen schwer dazustellen und in diesem Falle nur mit der Impulsantwort des Gerätes feststellbar ist. Ausschlaggebend für das zeitliche Verhalten eines Vorverstärkers, ist zum Beispiel der Parameter der Slew Rate. Beim Vergleich der beiden Geräte V276a und V376b ist im Bezug auf diesen Parameter anzunehmen, dass die Operationsverstärkertechnik im V376b die exaktere Impulsantwort liefert und damit von einer höheren Slew Rate beim TAB Gerät im Vergleich zum Siemens Vorverstärker auszugehen ist. Die sogenannten Vor- und Nachschwinger, die bei der Impulsantwort des V276a auftreten können jedoch auch auf den Messaufbau und die dabei verwendeten AD-Wandler zurückgeführt werden, welche die Wandlung in Oversamplingtechnik vornehmen und somit eine solche symmetrische Impulsantwort aufweisen.193 Andererseits müsste die Impulsantwort des V376b Verstärkers somit auch symmetrisch sein, was diesen Fall also ausschließt und darauf hinweist, dass die leicht oszillierende Impulsantwort auf eine starke Gegenkopplung in der Schaltung und damit eingehende Selbsterregung im V276a zurückzuführen ist.194

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Abb_56.png}
\caption{Vergleich der Impulsantworten V276a (links) und V376b (rechts)}
\end{figure}

\subsection*{4.2.4 Erdungskonzepte}

Bei der Erdung der Geräte wurde jeweils der Schutzleiter und das Gehäuse des Moduls, falls nicht schon durch mechanischen Kontakt erfolgt, über Kabelschuhe mit der Gehäusemasse verbunden. Die 0 V Leitung der 24 V Spannungsversorgung wurde direkt mit dem für 0 V ausgelegten Pin des Steckverbinders am Rundfunkmodul, die 0 V Leitung der 48 V Phantomspannung mit dem Signalschirm des Mikrofonsignals verbunden. Dieser Signalschirm wurde mit dem entsprechenden Pin

\begin{itemize}
\item 193 Vgl. Stereoplay (1992), S. 108
\item 194 Vgl. Schroeder (1963), S. 211
\end{itemize}

4.2.5 Der Telefunken V672 Vorverstärker als Fallbeispiel

330 kΩ bis zu 2,7 kΩ verändert wird. Ein zusätzlicher Boost-Modus verringert den Eingangswiderstand auf 110 Ω, was den geforderten minimalen Vorwiderstand von 80 Ω sicherheitshalber etwas überschreitet.197

Die Widerstandswerte für die Vorverstärkung wurden an erhältlichen Widerstandswerten, statt an genauen dB Werten orientiert und ergaben die unten stehende Bestückung der Drehschalter mit Widerständen. Anhand einer Darstellung aus dem Handbuch des Vorverstärkers, wie im Anhang 7.7.3 abgebildet, lassen sich die passenden Widerstandswerte ermitteln. Die unter Anhang 7.7.4 gelistete Tabelle zeigt Schalterpositionen, zugehörige Widerstandswerte und die jeweiligen Verstärkungsfaktoren auf. Die Berechnung des Verstärkungsfaktors erfolgt durch die Formel

\[
v \approx \frac{(R_g [k\Omega] + 8.2)}{(Re [k\Omega] \cdot 1.2)}
\]

Wobei der Wert 8.2 den unveränderlichen Gegenkopplungswiderstand in kΩ im Verstärker selbst darstellt, \(R_g\) den regelbaren Widerstand über Pin 9 und 10 der Steckerleiste und \(Re\) die Summe der Eingangswiderstände auf den symmetrischen Signalleitungen. Der Faktor 1,2 wird als Ausgleich für die Annahme einer idealen Verstärkerschaltung eingeführt.198 Damit die Rechnungen in der Tabelle jedoch der Realität entsprechen und sich keine Division durch Null ergibt, wurde bei den Eingangswiderständen je ein Quellwiderstand des Mikrofons von 200 Ω addiert. Rechnet man nun den Verstärkungsfaktor \(v\) wieder in Dezibel um, muss die folgende Formel angewandt werden \(L = 20 \log v [\text{dB}]\).

Bei der Kontrolle fällt auf, dass die Modi rein rechnerisch 34 dB und 62 dB genannt werden sollten, der genaue Wert der Verstärkung kann jedoch nur mithilfe des exakten Scheinwiderstands der Signalquelle errechnet werden.

197 Dickreiter (1979), S. 409
198 Vgl. Dickreiter (1979), S. 733
Diese kurze Bildstrecke verdeutlicht, dass die Platzknappheit beim V672 zu einem Einbau in ein 2 HE Gehäuse zwang, darüber hinaus ist hier die deutlich aufwändigerere Verkabelung im Vergleich zu Modulen, wie dem BFE MK5b Equalizer zu erkennen. Die letzten Bilder zeigen die finale Lötsession direkt im Aufnahmeraum, am Vorabend der zweiten Produktion mit der Band The Fenders 55.
4.2.6 Zeitaufwand für Fertigung, Montage und Inbetriebnahme

Während professionelle Anbieter auf dem freien Markt für eine solcher Rackinglösungen zwischen 800 € und 1000 € zuzüglich Mehrwertsteuer berechnen, fielen in diesem Fall nur die tatsächlichen Materialkosten und der selbstverständlich immense Zeitaufwand an. Hierbei ist zu bedenken, dass dieses Projekt, mit seinen elektrotechnischen und handwerklichen Ansprüchen in dieser Art eine Premiere für den Autor darstellte und sämtliche Schwierigkeiten und Fehleinschätzungen zu großen Zeitverlusten führten. Dies verkürzt die Durchführungsduer bei zukünftigen Projekten und hilft abzuschätzen, ob ähnliche Projekte durchgeführt oder eher Dienstleister hierfür herangezogen werden sollen. Der Gesamtaufwand für die Bestückung, Fertigung, Tests und Modifizierungen betrug ca. 14 Personentage. Hierbei ist die Zeit für die Planung, Recherche, Auswahl und Einkauf der Bauteile, sowie die Fräsu der Frontplatten nicht eingeschlossen.

Rechnet man nun die geschätzten 4300 € Kosten bei Fremdfertigung gegen bezahlte Arbeitstage, bei einem angenommenen Tagessatz von 238 € und Materialkosten von ca. 800 € auf, ergibt die Differenz nahezu 0 €. Dies verdeutlicht erstens, dass für viele Tonmeister, die Neueinsteiger in diesem Bereich sind, die professionelle Fertigung weitaus attraktiver ist. Setzt man sich selbst jedoch das Ziel, die Zusammenhänge zu verstehen und bei späteren Selbstbauprojekten darauf aufzubauen, lohnt sich diese Investition an Zeit und Aufwand sicherlich auf Dauer.

4.2.7 Die Effektgeräte

Federhall

Während in modernen Studios, der Federhall nur noch in Gitarrenverstärkern oder zur Erzeugung einer absichtlichen Lo-Fi Assoziation seinen Platz hat, ist er in der Musik der Fünfziger Jahre sehr vielseitig einsetzbar. So ist der scheppernde

![Abb. 60: OpAmp-basierte Eingangsstufe für einen Federhall](image)

Ebenfalls basierend auf der Accutronics Ausgangsschaltung wurde die oben abgebildete Schaltung entwickelt, welche einen verbesserten Rauschabstand aufweist.

Abb. 61 OpAmp-basierte Ausgangsstufe für einen Federhall

Der Entwickler geht von relevanten Hallinformationen zwischen 600 und 7000 Hz aus und hat das Bandpassfilter am Eingang der Schaltung dementsprechend ausgelegt. Die vorliegende einstufige Verstärkerschaltung ist anfällig für Verzerrungen, wenn Spannungen größer als 80 mV erzeugt werden. Dies ist jedoch nach Meinung des Entwicklers schwer zu erreichen und somit nicht relevant. Für den Fall, dass Verzerrungen das Signal nachteilig färben, kann eine zweistufige Verstärkerschal-

Nachhallplatte

Die Dimension der Hallplatte wurde beim Selbstbau identisch zu der EMT Vorlage mit 2 m x 1 m x 0,001 m gewählt, was das Material angeht wurde aus Kostengründen vorerst ein verzinktes Stahlblech gekauft. Bei der Original EMT Hallplatte wurde kaltgewalzter Stahl eingesetzt, das überwiegend aus lange gelagerten Chargen gewählt wurde und eine leichte Dämpfung der Höhen hervorrufen sollte. Cunningham verbaut in seinem Nachfolger der EMT 140 Edelstahlplatten und verspricht sich hier einen natürlicher klingenden Frequenzgang zwischen 1-2 kHz, im Vergleich zu der Stahlplatte, die bei 500 Hz eine Frequenzanhebung aufweist. Bei dem angefragten Lieferanten waren die geforderten Maße jedoch nur als verzinkte Blechplatte kurzfristig verfügbar, weswegen dann entschieden wurde mit der Platze den Selbstbau durchzuführen und später zu entscheiden ob eine Klangverbesser-

Um mit zwei Tonabnehmern ein stereophones Signal zu erzeugen, sollte der Abstand zum Treiber jeweils unterschiedlich gewählt werden. Dies ist auf die Ausprägung der Moden an verschiedenen Orten der Platte zurückzuführen und stei-

Abb. 62: Entzerrung, wie von Cunningham an der Eingangsstufe empfohlen.

Abb. 63: Das bereits vorbereitete Stahlgestell für den Rahmen des Black Shack Plattenhalls
5 Praxisteil B: Produktion von Musikbeispielen

5.1 Workflow 1

5.1.1 Spezielle Anforderungen von Hillybilly / Western Swing

Abb. 64: Ablauf des Workflows für kleine Ensembles und Musik der 30er bis 50er Jahre

Die Aufnahme sollte also auf einfachem und direkten Weg, ohne die Notwendigkeit eines dedizierten Monitorings, direkt auf das Aufnahmemedium stattfinden. Hier ist die Arbeit mit der Bandmaschine gefragt, was die Simulation einer authentischen Aufnahme weiter verstärkt. Falls klangliche Veränderungen vorzunehmen sind, so kann Kompression/Limitierung und Entzerrung bei der Überspielung auf die DAW geschehen. Durch die monophone Aufnahme müssen klangliche und räumliche Unterschiede rein akustisch geschaffen werden und analog zu den Abbildungen in den Manuals der ersten RCA Mikrofone über die Aufstellung der Musiker im Raum erfolgen.202

5.1.2 Produktion mit Devils & Söhne

Die Band

Die Band Devils & Söhne wurde im Jahr 1999 von Stefan Brodbeck gegründet und widmet sich voll und ganz der Neuinterpretation und Komposition von Hillbilly und Western Swing Stücken aus der Ära der 1940er und 1950er Jahre. Die aktuelle Besetzung besteht aus Annie Leopardo (Gesang), Steve McBread (Gitarre, Gesang), H.P. Jackson (Kontrabass), F.A. Miller (Lap Steel, Banjo, Mandoline), Ewe (Fiddle) und Bende (Schlagzeug). Die Band hat bereits vier CDs veröffentlicht und war bisher mit

Abb. 65: Devils & Söhne (2007)

202 S. Anhang 7.7.5
den Ergebnissen, im Sinne der Authentizität nie zufrieden. Die Tatsache, dass bei den vorherigen CDs stets im Overdub und in getrennten Kabinen eingespielt wurde, blieb negativ im Gedächtnis, aber auch die zu sauberen und transparenten klanglichen Ergebnisse.

Die Aufnahmen

Für die monophone Aufnahme der Band wurde das älteste und wohl bekannteste Mikrofon des Studios, RCA 44-A gewählt, das mit seiner Charakteristik einer Acht großen Spielraum für die klanglich sinnvolle Aufstellung der Musiker bietet. Als Vorverstärker kam der Universal Audio LA-610 MKII zum Einsatz, wobei hier die Gainregelung auf +10 dB gestellt war und durch die damit verringerte Gegenkopplung zu einem verstärkten Klirrverhalten führte. Der integrierte optische Kompressor wurde sanft mit einer Pegelreduktion von 2-3 dB genutzt, um bereits beim Abhören eine Vorstellung vom Endprodukt zu bekommen. Da die Bandmaschine unglücklicherweise während der ersten Aufnahme einen Netzteilschaden erlitt und aufgrund starker Gleichlaufschwankungen nicht eingesetzt werden konnte, wurde direkt auf die angeschlossene DAW mit Cubase 5 aufgenommen. Dieser Umstand war für die Musiker weniger bedeutend, als für mich, da die Aufnahmesituation mit dem einzelnen Mikrofon bereits eine große Wirkung auf die Atmosphäre im Aufnahmeraum ausübte.

Abb. 66: Sicht aus der Regie (links), Gelassene Stimmung zwischen den Takes (rechts)
So wurden die Musiker zu aller erst der Priorität nach um das Mikrofon verteilt, so dass beide Gesänge auf 0° bzw. 180° der Einsprechrichtung des Mikrofons positioniert wurden und der Schlagzeuger und der Lap-Steel Verstärker eher im Bereich von 90°, also der unempfindlichsten Seite des Mikrofons standen.

Durch diese Positionierung wurden die jeweiligen Instrumente nicht nur leiser, denn der diffuse Anteil der vom Raum auf die Mikrofonmembran zurückgeworfen wird, ist klanglich weicher und nimmt beiden Instrumente die bekannte Schärfe im Klang. So kann die Lap-Steel Gitarre als Klangteppich in den Strophen die Harmonien unterstützen, bei Soli wirkt das Instrument jedoch niemals scharf und kann verhältnismäßig laut im Raum gespielt werden. Da der Kontrabass akustisch keinen hohen Schalldruckpegel erzeugt, wurde dieser ähnlich nah wie die Stimme am Mikrofon positioniert. Damit von diesem mehr tonale Anteile und weniger Griff- und Slapgeräusche aufgenommen werden, wurde das Mikrofon weiterhin etwas in der Höhe abgesenkt. Für die Violine, welche oft die Lead-Parts neben den Stimmen übernimmt, wurde ein Ort neben der weiblichen Sängerin Annie gefunden, an dem genügend Spielraum vorhanden ist, um bei Strophenbegleitungen oder Einwürfen weiter weg und bei den Soli einen Schritt vortreten zu können.\footnote{Dies ist in der Abbildung des Aufbaus durch ein transparentes Symbol angedeutet.} Die erste Akustikgitarre, die Steve spielte, stellte ein klangliches Problem dar, das aufgrund der Mikrofonierung später nicht mehr gelöst werden könnte. Der Klang der Gitarre war auch in einer Entfernung von ca. 1 m vom Mikrofon stark wummernd und das in einem Frequenzbereich, in dem Kontrabass und Lap-Steel bereits sehr dominant waren. Aus diesem Grund wurde die Akustikgitarre zugunsten des gesamten klanglichen Zusammenspiels durch eine etwas dünner klingende getauscht. Diese bot aber letztendlich immer noch genügend Lautstärke und klangliche Fülle, um in den Strophen und Refrains rhythmisch zu begleiten. Da Steve gleichzeitig die Gitarre spielt und singt, musste der Pegel
auch hier durch ein Ausweichen der 180° Achse und eine größere Entfernung aus-
tariert werden.

Beim ersten eingespielten Titel „My Cherie“ ergab sich ein Abstand von ca. 1,5 m
vom Mikrofon für die Vocals als beste Lösung, da diese hier in den Gesamtsound
eingebettet werden, ohne aufdringlich zu wirken und somit das Tempo des Stückes
zu bremsen. Diese Entfernung und die Positionierung der weiteren Instrumente wurden gemeinsam mit der
Band nach dem Abhören der Klangbeispiele für optimal
befunden und als Grundlage gewählt. Durch die ver-
derschiedenen Entfernungen ergab sich eine Tiefenstaff-
lung, die klanglich und im Bezug auf den Diffusanteil be-
reits nach einem in sich geschlossenen Ensemble klang,
das in einem Raum zusammen musiziert. Während „My
Cherie“ völlig ohne artifziellen Hall auskam, begrüßte
die Band beim zweiten Titel „It don’t hurt anymore“ meinen Vorschlag, hier mit
einem dezenten Slapback Echo die Stimme etwas mehr von der Band abzusetzen
und dadurch den schwebenden Charakter des Gesangs zu verstärken.204 Darüber
hinaus wurde bei diesem Stück die Sängerin Annie näher ans Mikrofon gestellt, so
dass ihr Gesang durch den eintretenden Nahbe-
sprechungseffekt voller klang.205 Bei diesem Stück
wurde mit einem Kopfhörer für das Monitoring
gearbeitet, um Intonationsschwierigkeiten zu
vermeiden. Um dem ruhigen Charakter dieses
Stücks gerecht zu werden, wurde die Snaredrum
von einer 8“ Tiefe zu einer 5,5“ Tiefe gewechselt,
was die Lautstärke und Klangfülle etwas verringerte. Als problematisch bei den Aufnahmen er-
wies sich der Boden des Studioraumes, der durch
einen Hohlraum beim gelegentlichen Stampfen
der Musiker zu einem tieffrequenten Rumpeln im

204 Hier kam das Bandecho Dynacord Miniecho zum Einsatz.
205 Auch diese Position ist durch das transparente Symbol der Sängerin angedeutet.
Subbassbereich angeregt wird. Hier halfen nur wiederholte Hinweise darauf, dass dieser Frequenzbereich eigentlich für den Kontrabass reserviert ist.

Die Postproduktion

![Abb. 70: Berlant Concertone Röhrenpreamp](image)

![Abb. 71: Die Regie des Black Shack Studios](image)

HÖRBEISPIEL

03 – Devils & Söhne – It don’t hurt anymore DAW Version
04 – Devils & Söhne – It don’t hurt anymore Analog Distorted Version
Abb. 72: Aufbau für die Aufnahmen mit Devils & Söhne
5.2 Workflow 2

5.2.1 Spezielle Anforderungen von Rockabilly / R&B

Workflow 2 ist für kleine bis mittlere Besetzungen von 3-4 Musiker gedacht, die wenn möglich ohne Schlagzeug einspielen. In jedem Fall ist hier große Disziplin bei der Lautstärke der einzelnen Musiker gefragt, die sich bewusst sein müssen, dass die Pegelverhältnisse im Raum entscheidenden Einfluss auf die späteren Ergebnisse üben. So ist der Schlagzeuger, falls vorhanden, darauf hinzuweisen, dass er möglichst filigran zu spielen hat, da ansonsten das Übersprechen bei der gegebenen Raumgröße zu sehr ansteigt. Was das Monitoring angeht können zwei unabhängige Kopfhörermischungen angeboten werden, es ist jedoch für die Balance der Musiker im Raum besser, darauf zu verzichten. Die Mikrofonierung wird hier bereits, ganz im Sinne der Sun Records Studios mehrfach vorgenommen, sodass für jedes Instrument ein passendes Mikrofon und Vorverstärker eingesetzt und beim gesamten Klangergebnis eine größere Fülle erreicht werden kann.

Die Entfernungen der Einzelmikrofone von den Instrumenten und Verstärkern sind im Gegensatz zur heutzutage sehr verbreiteten Close-Up Positionierung in einem Abstand von 20 bis 50 cm vorzunehmen. Dies ist einerseits aufgrund des starken Nahbesprechungseffekt der Bändchenmikrofone nötig, um einen ausgeglichenen Klang zu erreichen und spiegelt andererseits die Arbeitsweise der damaligen Tonmeister wieder, bei der das Übersprechen zum Erreichen eines stimmiger und runderen Produktionsergebnisses genutzt wurden. Falls die akustische Trennung jedoch erwünscht oder erforderlich ist, können die hierfür gebauten Gobos206 aufgestellt werden. Die Summierung der Einzelkanäle erfolgt direkt über das Mischpult, die Aufnahme erfolgt entweder gruppiert auf die zwei Kanäle der Bandmaschine oder aber als fertiger Mix. Diese Aufnahme wird in einem weiteren Schritt über die analogen Geräte in Dynamik, Klang und Räumlichkeit bearbeitet, so dass diese wieder für die Erstellung der Pre-Master CD auf die DAW überspielt werden kann.

206 Als Gobos werden aufstellbare Trennwände bezeichnet, die mit akustisch wirksamen Dämmstoffen gefüllt sind und im Bereich der Höhen und oberen Mitten das Übersprechen der Instrumente verringern.
5.2.2 Produktion mit The Lonesome Drifters

Die Band

Die Lonesome Drifters bestehen erst seit dem Jahr 2008, haben sich aber durch ihre überzeugenden Live-Performances und ihr außergewöhnliches Repertoire bereits einen hohen Status in der nationalen Szene erspielt. Die Mitglieder der Band sind Stefan (Akustikgitarre, Gesang), Silvio (E-Gitarre, Gesang), Joe (Kontrabass), allesamt zwischen 20 und 26 Jahren alt. Stilistisch gesehen ist die Band im Bereich authentischer Rockabilly-Trios aus den Fünfziger Jahren anzusiedeln, ganz im Sinne von Johnny Cash & The Tennessee Two oder
Elvis Presley mit Bill Black und Scotty Moore.

Die Aufnahmen

Bei der Aufnahme spielte Silvio eine De Armond Starfire Special E-Gitarre mit Alnico 2k Single Coil Tonabnehmern. Er benutzte den Fender Blues Deville Verstärker des Studios, dieser wurde mit dem RCA 44-A Bändchenmikrofon in ca. 30 cm Abstand aufgenommen. Damit der Verstärker seinen obertonreichen Klang entfalten kann, muss er aufgrund seiner hohen Leistung entsprechend laut eingestellt werden, was den Einsatz eines Gobos vor dem Verstärker bedingte. Dies sorgte auch für einen klareren Gitarrensound, da dieser nicht mehr in so starker Form auf das Gesangsmikrofon übersprach. Sänger Stefan spielte während dem Singen eine Lakewood Akustik Gitarre. Als Gesangsmikrofon wurde das RCA 77-DX in der Stellung *Unidirectional* bzw. in Nierencharakteristik²⁰⁷ und als Stütze für die Akustikgitarre ein Neumann KM84i Mikrofon benutzt. Das KM84i wurde bereits öfter von mir für die Aufnahme an der Akustikgitarre eingesetzt und zeichnet sich durch eine gute Transientenwiedergabe und einen nicht zu spitzen Höhenfrequenzgang aus. Der Kontrabassist Joe spielt, wie es oft der Fall ist, einen günstigen Einsteigerbass mit Fertigungsort in Fernost. Der Bass wurde jedoch neu für das Slap-Spiel eingestellt und es wurden nylonumspannte Presto Stahlsaiten aufgespannt, die einen angenehmen Slap- und Grundton, aber keine so schwache Spannung, wie z.B. Darmsaiten auf-

²⁰⁷ Durch die rückseitige Ausblendung kann der Direktschall des dahinter befindlichen Gitarrenverstärkers geringer auf das Gesangsmikrofon übersprechen.

Auch bei dieser Aufnahme konnte die Bandmaschine aufgrund des defekten Netzteils nicht eingesetzt werden. Um dennoch die Arbeitsweise beizubehalten, wurden die Einzelspuren über das Analogmischpult summiert und als Stereospur auf die DAW aufgezeichnet. Dies hat den offensichtlichen Nachteil, dass spätere Editiermöglichkeiten minimal sind, bringt aber den Vorteil mit sich, dass die Musiker auf diese Weise mit höher Konzentration an die Aufnahmen rangehen. Auch für mich als Engineer stellte dies eine große Herausforderung dar, die mich an Erfahrungen aus dem Bühnenalltag als FOH erinnerte. Aus dieser Sicht stellte diese Wahl eine willkommene Übung im Bezug auf spätere Aufnahmen für mich dar, die auch direkt summiert, jedoch aber auf Band aufgezeichnet werden sollen. Ein weiterer Aspekt bei sogenannten Direct to 2-Track Aufnahmen ist die Verbindung zwischen Engineer und Band, wobei der Engineer hier durch die Live-Automationen stärker in den Entstehungsprozess eingebunden wird und quasi als weiteres Bandmitglied agiert. Dies erhöht jedoch auch die Verantwortung, da jeder Arbeitsschritt als entscheidend für die Qualität des späteren Endprodukts sein kann.
Obwohl große Teile der originalen Rockabilly LPs auf diese Weise aufgenommen wurden, ist es in der heutigen Zeit nicht selbstverständlich, dass Musik, die dem damaligen Ideal nacheifert mit entsprechernder Technik und auf entsprechende Weise aufgenommen wird. Dadurch, dass die Musiker jedoch meist nicht nur musikalisch in die 50er Jahre eintauchen, sondern auch ihren Lebensstil daran orientieren, werden solch vergangene Aufnahmetechniken gerne akzeptiert, wenn nicht sogar vorausgesetzt. Bei der Aufnahme gab es dennoch Punkte, an denen den Musikern erklärt werden musste, dass spätere Pegel- oder Klangveränderungen der einzelnen Musiksignale nicht möglich sein werden und die Einstellung in diesem Moment final ist.

Die Postproduktion

![Abb. 77: Ein kurzer Plausch zwischen den Aufnahmen](image)

![Abb. 78: Empirical Labs EL7 Fatso Sr. als VST-Plugin für die UAD Dsp-Karte.](image)
Im Endeffekt eine Vielzahl von Einstellmöglichkeiten, die bei gemäßigtem Einsatz durchaus als Ersatz für Analogequipment dienen können. Als weniger flexible Alternative kann das Plugin Tal-Tube von Togu Audio Line genannt werden, das sich lediglich zur Verzerrung eignet. Bei einem Vergleich mit einer FFT-Analyse wurde festgestellt, dass das Fatso Plugin dominante k_3 und k_5 Klirrfaktoren aufweist, während mit dem Tal-Tube Plugin zwischen k_2, k_3 und deren Vielfachen gewählt und kombiniert werden kann.

Abb. 79: Togu Audio Line – Tal Tube als natives VST-Plugin

Im Vergleich zum Fatso Plugin klingen bei Tal Tube die Obertöne mit steigender Frequenz nicht ab und es ergibt sich ein etwas harscher Klang in den Höhen. Zusätzlich zu der komplett digital nachbearbeiteten Version wurde eine Version erstellt, die als Monosignal in den Berlant Concertone Triodenröhrenverstärker geleitet und damit leicht angezerrt wurde. Hier gab es jedoch das Manko, dass die Verzerrung im Nachhinein nicht mehr auf die Stimme allein angewandt werden konnte und das Signal der Akustikgitarre und die Bassfrequenzen stets unterschiedlich zu zerrren anfingen, ohne, dass die Stimme zerrte.
Abb. 80: Aufbau für die Aufnahmen mit The Lonesome Drifters
5.3 Workflow 3

5.3.1 Spezielle Anforderungen von Modern Rockabilly

DAW stellt letztendlich die letzte Komponente dar, die den gewünschten Klang einer Bandaufnahme bringt, ob clean aufgezeichnet oder stark übersteuert.

5.3.2 Produktion mit The Fenders 55

Die Band

Die Aufnahmen

Für die Aufnahmen mit den Fenders 55 musste eine geschickte Platzteinteilung im Raum erfolgen, damit sich ein geringes Übersprechen zwischen den Instrumenten ergab, aber dennoch eine produktive Atmosphäre und Blickkontakt zwischen den Musikern gewährleistet werden konnten. Das verwendete Drumkit war ein originalel 60er Jahre Kit vom deutschen Hersteller Tromsa, in Kombination mit einer Ludwig Snaredrum. Das Kit wurde monophon mit dem RCA 77-DX in Nierencharakteristik aufgenommen. Das Mikrofon wurde so positioniert, dass sich durch die Entfernung und die Ausrichtung ein ausgewogenes Verhältnis der Einzelsignale des Schlagzeugs ergab. Zusätzlich wurde die Bassdrum mit einem modernen Bassdrum-Mikrofon D6 des Herstellers Audix gestützt. Um die Lautstärke des Kits im Raum herabzusetzen wurde ein Gobo quer davor aufgebaut. Die beiden Gitarrenverstärker wurden jeweils parallel mit einem Beyerdynamic M160 Bändchenmikrofon und einem Shure 545S Unidyne III aufgenommen. Bei Phasengleichheit kann durch die Kombination dieser beiden unterschiedlichen Klangcharak-
teristiken der gewünschte Sound später eingestellt werden. Jens spielte als Rhythmusgitarrist zwei verschiedene halbakustische Modelle von Gretsch und De Armond, Martin spielte eine ESP Stratocaster. Der Bassist spielte beim ersten Titel einen Fender Jazzbass, erst beim zweiten Stück wurde auf den Kontrabass umgebaut.

ren Mikrofon AAM CM47/67 vorgenommen. Für die Vocals kam bei beiden Stücken das Dynacord Bandecho zum Einsatz, was für den späteren Mix verfügbar sein sollte und als separate Spur aufgenommen wurde.

Abb. 85: Aufbau für die Aufnahmen mit The Fenders 55

Die Postproduktion

Bei dieser Produktion kam als einzige eine digitale Mischung im modernen Sinne zum Einsatz. Hierfür wurden die Einzelkanäle entsprechend ihrer Rolle bei dem jeweiligen Stück entzerrt, leicht komprimiert und mit Raumanteilen versehen. Da zu diesem Zeitpunkt die analogen Halleffekte noch nicht fertig gestellt waren, wurde mit den EMT 140 und 250 Emulationen von Universal Audio gearbeitet. Entscheidend für die Durchsetzungskraft der Stimme im Mix war hier die Überspielung auf den Berlant Concertone Röhrenverstärker und eine hörbare Verzerrung dieser, so dass sich durch die gewonnen Obertöne eine Präsenz ergab, die man von klassischen Rock’n’Roll und Rockabilly Stücken kennt. Erstaunlich war,
dass sich der dumpfe Klang des RCA 44-A am Schlagzeug erst durch eine starke Höhenanhebung zu dem entwickelte, was beim Song *Never Again* als angemessen erschien. Im Vergleich zu meinen Erfahrungen mit Kondensatormikrofonen als Overheads konnte man in diesem Fall bis zu 15 dB bei 10 kHz mit einem Helios 69 EQ Plugin anheben, ohne dass der Klang bröselig oder harsch wurde. Hier wurde auch die Software Version des SPL Transient Designer eingesetzt, um die Impulse des Schlagzeugs weiter zu betonen, so dass sich im Zusammenspiel mit dem EMT 140 Hall ein knallender Rhythmus ergab. Die Gitarren wurden lediglich etwas im Bassbereich von 100 bis 300 Hz ausgedünnt, damit in diesem Frequenzbereich der E-Bass genügend Spielraum hat. Aufgrund leichter Intonationsschwierigkeiten beim Kontrabass wurde das Programm Melodyne von Celemony zur Tonhöhenkorrektur eingesetzt. Da das E-Bass Signal über eine DI-Box aufgenommen wurde, fehlten die typischen Klangfärbungen, die beim Zusammenspiel von Pickup Impedanz und Eingangswiderstand des Verstärkers entstehen, ebenso wie das Klirrverhalten und die Resonanzen des Verstärkers. Aus diesem Grund wurde dies mit einem Plugin zur Ampsimulation in Cubase nachempfunden.
6 Fazit

Der Gesamtverlauf des Projekts Black Shack Studio hat gezeigt, dass für eine authentische Produktion von Bands die Musikstile der 1940er bis 1960er Jahren praktizieren, moderne Klangästhetiken und Arbeitsweisen nur bedingt geeignet sind. So kommt es, dass die Hörerfahrung, das musikgeschichtliche Wissen, das musikalische Verständnis, die Atmosphäre bei der Aufnahme und schließlich auch die technische Ausstattung großen Einfluss auf das Endergebnis ausüben.

Die angedachte Verbindung von Digitaltechnik und Vintage-Equipment funktionierte auf eine sehr produktive Weise, da ich durch meine vorherigen Erfahrungen
mit den zahlreichen Plugins ahnen konnte war, an welcher Stelle diese ohne klangliche Einbußen eingesetzt werden konnten.

Ausblick

In technischer Hinsicht sind weitere Verbesserungen beim Erdungskonzept der Vorverstärkermodule geplant, wo mit RC-Gliedern anstelle eines Soft Ground Lifts via Widerstand, eine frequenzabhängiges Reduktion der Einstreuungen erfolgen soll. Weiterhin sollen Lochblechgehäuse um die Netzteile im Sinne eines Faraday'schen Käfigs, die klanglichen Einflüsse der Netzteile weiter minimieren.

Schließlich ist das Projekt, das im Rahmen dieser Master Thesis gestartet wurde der Beginn eines langen und erfahrungsreichen Prozesses, an dessen Ende die Verwirklichung eines eigenen Trademark Sounds steht, der zwar anpassungsfähig, modern und flexibel, aber dennoch unverwechselbar und authentisch ist. Der ständige Kontakt mit Musikern, Kollegen und der heutigen Rockabilly Kultur ist gleichzeitig Inspirationsquelle und andererseits Vorraussetzung für eine ernsthaftere Verfolgung dieses Zieles.

Im Anschluss an die Fertigstellung dieser Arbeit sollen die bisher schriftlichen Eindrücke von den Geburtsstätten des Blues, Rockabilly und R&B auf einer Reise durch die USA vertieft werden. Im Anschluss daran sind die ersten Auftragsproduktionen mit den Bands aus den Beispielproduktionen dieser Arbeit in Planung.
Danksagungen

Als erstes möchte ich meinen Prüfern Prof. Oliver Curdt und Prof. Jens-Helge Her- gessell meinen Dank für die Betreuung meiner Arbeit und die Unterstützung des Projekts aussprechen.

Ganz besonderer Dank gilt meinem Praxisbetreuer Heiko Schulz, der mir bei jegli- chen Fragen stets zur Seite stand und das Projekt von Beginn an hat wachsen sehn.

Phillip Geßmann möchte ich für die Fräsung der Frontplatten danken und Christi- an „Skully“ Schädle für seine überaus kompetenten Hilfestellungen in elektrotech- nischen Fragen.

Ein besonderer Dank gilt meiner ganzen Familie, die meine Abwesenheit über den gesamten Zeitraum der Verfassung der Arbeit geduldig ausgehalten hat.

Und letztendlich möchte ich auch meiner Freundin Tatjana Lorenz danken, dafür dass sie in schweren Zeiten für mich da war und mir jegliche Last abgenommen hat, damit ich mich voll auf die Arbeit konzentrieren konnte.
7 Quellenangaben

7.1 Literatur

Dickreiter, Michael (1979): Handbuch der Tonstudiotechnik, München: K.G. Saur Verlag KG

Jüngling, Gerd (1990) : Analogie Mischpulttechnik, Oberhausen: Studio Presse Verlag

Röglin, Claus (1993): Record Hops-Ducktails und Pettycoats, Oldenburg: Convent-Verlag

Röglin, Claus (1995): When music was still music, Oldenburg: Convent-Verlag

Sound&Recording (2009): Ausgabe April 2009, Ulm: Musik Media Verlag

7.2 PDF Dokumente

Alle PDF Dokumente zuletzt geprüft am 27.02.2010.

AES (1989): An Afternoon with Bill Putnam

http://www.aes.org/aeshc/docs/afternoon_putnam.pdf

AKG (n.a.): Studiohallgerät BX20 Bedienungsanleitung

http://www.akg.com/mediendatenbank2/psfile/datei/23/BX204055d1e1a05c1.pdf

Altec Lansing (1958): 1567A Mixer Amplifier - Operating Instructions

http://danrudin.net/cgi-bin/download.pl?dir=Altec/&file=Altec_1567A.pdf

IRT (1950): Braunbuch-Beschreibung V41

http://audio.kubarth.com/rundfunk/getfile.cgi?f=C%2C3%28V-S%28S-%23DU-U%5D%22%3CF%U%3BF%29U8V%40O36%I%3A%26%K7U8T%2C2YP9%268%60%0AIRT

(1959) Braunbuch-Beschreibung V76

http://audio.kubarth.com/rundfunk/getfile.cgi?f=%40%2C3%28V-S%28S-%23DU-U%5D%22%3CF%U%3BF%29U8V%40D%3D%26%87U8W-BYP9%268%60%0A

RCA (1955): Instructions for Polydirectional Microphone Type 77-DX

http://www.coutant.org/rca77dx/77dxinst.pdf

Rebhun (n.a.): The Echoplate Chamber – A decay whose time has come

Telefunken (1929): Beschreibung der Kondensatormikrophone ELA M 301, M 302, M 303

http://neumann.com/download.php?download=cata0037.PDF

Siemens (1967): Geräteanleitung des V276a

http://audio.kubarth.com/rundfunk/getfile.cgi?f=%3F%3C%28V-S%28S-%2C5%5DV%2B-W-I96UE%3BG-%3F%3DC%28%2BQ%21D9%40%60%60%0A
7.3 Internetquellen

Alle Internetquellen zuletzt geprüft am 27.02.2010.

Lilienfeld, Julius (1927):

7.4 Wikipedia

Alle Wikipedia Quellen zuletzt geprüft am 27.02.2010.

http://de.wikipedia.org/wiki/Backbeat
http://de.wikipedia.org/wiki/Doo_Wop
http://en.wikipedia.org/wiki/Echo_chamber
http://de.wikipedia.org/wiki/Endstufe_(Elektrotechnik)
http://en.wikipedia.org/wiki/Luther_Perkins
http://en.wikipedia.org/wiki/Ribbon_microphone
http://de.wikipedia.org/wiki/Tin_Pan_Alley
http://en.wikipedia.org/wiki/Valve_audio_amplifier
7.5 Abbildungsverzeichnis

ABB. 1: PRINZIPDARSTELLUNG DES SCHAUWEGES BEI DER AKUSTISCHEN GITARRE ... 21
http://www.guitar-letter.de/Knowledge/DerKlangvonAkustikundElektrogitarrenVergleich.htm

ABB. 2: ELVIS PRESLEY MIT MARTIN D-18 .. 24
http://www.scotthoover.net/2NoD18.html

ABB. 3: EIN TYPISCHER SINGLE-COIL TONABNEHMER IN EINSER STRATOCASTER GITARRE 26
http://cigarboxguitars.com/workshops/Pickup_Workshop.php

ABB. 4: EXEMPLARISCHE DARSTELLUNG EINES GITARRENTONABNEHMERFREQUENZGANGES 26

ABB. 5: DER EINFLUSS VERSCHIEDENER TONABNEHMERPOSITIONEN .. 25

ABB. 6: KAMMFILTER VERSCHIEDENER TONABNEHMERBAUWEISEN .. 26
http://www.guitar-letter.de/Knowledge/DasKlangMysteriumderHumbuckerModes.htm

ABB. 7: DER JUNGE B.B. KING MIT EINER GIBSON ES 150 UND EINEM FRÜHEN FENDER TWEED VERSTÄRKER 28
Escott, Hawkins (1992): Good Rockin’ Tonight, USA: St. Martin’s, S. 21

ABB. 8: FENDER TELECASTER ... 29

ABB. 9: FENDER BLUES DEVILLE (LINKS) UND GIBSON 5W (RECHTS) .. 31
Eigene Foto.

ABB. 10: BÖHMISCHER KONTRABASS VON CA. 1920 .. 32
Eigene Foto.

ABB. 11: AMPEG VERSTÄRKER UND MIKROFON ... 34
http://www.scotthoover.net/Ampeg.html

ABB. 12: GEGENÜBERSTELLUNG DER VERSCHIEDENEN RÖHRENTYPEN UND IHRER FUNKTIONSWEISEN 39
http://www.elektroinfo.de/strom/koehren.htm

ABB. 13: KENNLINIENFELDER DER RÖHRE EC 92 .. 40

ABB. 14: ERMITTlung DES ARBEITSPUNKTES MIT HILFSE DER WIDERSTANDSGERADE DURCH P1, P2, P3 41

ABB. 15: GRUNDSCHALTUNGEN DER ELEKTRONENRÖHRE .. 42

ABB. 16: GRUNDSÄTZLICHE ANORDNUNG DER GITTERBASISSCHALTUNG 46
http://www.frhul.com/content/diy/allgemein/koehrengrundschaltungen.html

ABB. 17: KATHODENBASISSCHALTUNG ALS EINGANGSTUFE UND ANODENBASISSCHALTUNG ZUR IMPEDANZANDWANDLUNG AM AUSGANG .. 46
http://www.frhul.com/content/diy/allgemein/koehrengrundschaltungen.html

124
ABB. 18: VERGLEICH LINEARER, QUADRATISCHER UND KUBISCHER KENNLINIEN .. 44
ABB. 19: DARSTELLUNG DER VERZERRUNGEN BEI VERSCHIEDENEN BETRIEBSKENNLINIEN 47
EBENDA, S. 744

ABB. 20: LINEARISIERUNG DER VERSTÄRKERNKLEINLICHE DURCH EINE GEGENKOPPLUNG MIT K => 1. 46
EBENDA, S. 702

ABB. 21: EMITTERSCHALTUNG .. 50
EBENDA, S. 683

ABB. 22: KOLLEKTORSCHALTUNG .. 51
EBENDA, S. 685

ABB. 23: BASISCHALTUNG ... 51
EBENDA, S. 686

ABB. 24: EINTAKT-VERSTÄRKER IN A-BETRIEB ... 52
EBENDA, S. 687

ABB. 25: KENNLINIEN EINES TRANSISTORS UND ERMITTUNG DES ARBEITSPUNKTES. 52
EBENDA, S. 687

ABB. 26: GEGENTAKT-VERSTÄRKER IN A-BETRIEB ... 50
EBENDA, S. 689

ABB. 27: GEGENTAKT-VERSTÄRKER IN B-BETRIEB ... 50
EBENDA, S. 691

ABB. 28: ÜBERNAHMEVERZERRUNGEN IM AB- UND B-BETRIEB .. 54
EBENDA, S. 692

ABB. 29: GRUND-SCHALTUNGEN EINES OPERATIONSVERSTÄRKERS 1 .. 52

ABB. 30: GRUND-SCHALTUNGEN EINES OPERATIONSVERSTÄRKERS 2 .. 53

ABB. 31: DER ALTec 1567A - EINE MOBILE MIXING-LÖSUNG IN RÖHRENTECHNIK 54
HERSTELLERMANUAL: http://danrudin.net/cgi-bin/download.pl?dir=altec/&file=altec_1567a.pdf

ABB. 32: Der RCA 76-B2 KONSOLENMISCHER .. 55
HERSTELLERMANUAL: http://danrudin.net/cgi-bin/download.pl?dir=RCA/&file=RCA_76-B2.pdf

ABB. 33: Universal Audio Modul aus der 610 Röhrenkonsole ... 59

ABB. 34: Neil Youngs private ua 610 Green Tube Konsole ... 57

ABB. 35: Tonfilmkonsole KLR 5060 bestückt mit V72 VERSTÄRKERN .. 57
EBAY AUCTION: http://cglebay.de/vintage-KLANGFILM-6-4-Stereo-TUBE-CONSOLE-MIXER-10X-
V72_W0QQITEMZ32049446993QCMIZVIEWITEMQQTZMXERS?HASH=ITEM4a9eebb20b91

ABB. 36: Routingmöglichkeiten in einer V72-BASIERTE TONFILMKONSOLE 61
http://klangfilm.free.fr/index.php?lang=0&music&=0&frame=1&item=0&title=0&dir=1&num=

ABB. 37: Sam Phillips mit Ampex 350 und Presto 6-N Plattenschneider im Hg. 62
http://www.scottymoore.net/studio_sun.html

ABB. 38: KENNLINIE MIT UND OHNE VORMAGNETISIERUNG ... 64
ABB. 39: Zusammenhang einiger Bandeigenschaften und dem gewählten Vormagnetisierungsstrom 62
ABB. 40: Hallraum des Black Shack Studios ... 67
ABB. 41: Das Innenleben einer EMT 140 Nachhallplatte... 70
http://www.danalexanderaudio.com/EMT/EMT140.jpg
ABB. 42: Prinzipi schem der V672 Verstärkers mit R6 als festen inneren Gegenwiderstand 73
ABB. 43: Signalführung der analogen Studiodeleitungen... 75
Eigene Abbildung. Erstellt mit OmniGraffle Professional.
ABB. 44: Platzverhältnisse in einem bestückten 1 HE Rack... 77
Eigene Abbildung. Erstellt mit Google SketchUp
ABB. 45: CAD-Konstruktionszeichnung aus Adobe Illustrator....................................... 77
ABB. 46: Schaltbild des 24 V Netzteils und der 48 V Spannungsversorgung.................... 78
Eigene Abbildung. Erstellt mit SPan 7.0.
ABB. 47: Audiosignalweg am Eingang eines V276 Moduls... 79
Eigene Abbildung. Erstellt mit SPan 7.0.
ABB. 48: Problemstellung einer Netzgleichrichtung ... 80
ABB. 49: Werkstatt während der Fertigstellung des V672 Verstärkers............................ 81
Eigenes Foto
ABB. 50: Überprüfung der 24 V Gleichspannung mit einem Fluke Oszilloskop.............. 85
Eigenes Foto
ABB. 51: Bilderstrecke Werkstatt ... 82
Eigene Fotos
ABB. 52: BEHRINGER T1953 mit Warmth Regler auf Min. (links) und Warmth auf Max. (rechts)..... 84
Eigene Abbildung. Erstellt mit Electroacoustics Toolbox
ABB. 53: Überraschend starke Höhenanhebung bei Erhöhung des Warmth Parameters 84
Eigene Abbildung. Erstellt mit FuzzMeasure 2.
ABB. 54: UA 610-MKII Klirrverhalten.. 85
Eigene Abbildung. Erstellt mit Electroacoustics Toolbox.
ABB. 55: Frequenzgänge des LA-610 MKII bei verschiedenen Verstärkungsstufen (s. vorh.Abb.) 86
Eigene Abbildung. Erstellt mit FuzzMeasure 2.
ABB. 56: Prinzipieller Vergleich der Frequenzgänge von V672, V376b und V276a und zweier Betriebss Modi des V672 Verstärkers ... 87
Eigene Abbildung. Erstellt mit FuzzMeasure 2.
ABB. 57: Vergleich der Impulsantworten V276a (links) und V376b (rechts)................. 88
Eigene Abbildung. Erstellt mit FuzzMeasure 2.
ABB. 58: Mit Widerständen bestückter und teilweise aufgelöteter 3-Pol Schalter mit 12 Stufen... 93
Abb. 59: Verschiedene Entwicklungsstadien des Telefunken V672 Gehäuses 91

Eigenes Foto.

Abb. 60: Die fertig gestellten Geräte, eingebaut in mobile Racks ... 96

Eigenes Foto.

Abb. 61: OpAmp-basierte Eingangsstufe für einen Federhall ... 93

Abb. 62: OpAmp-basierte Ausgangsstufe für einen Federhall ... 94

Abb. 63: Entzerrung, wie von Cunningham an der Eingangsstufe empfohlen .. 100

Abb. 64: Das bereits vorbereitete Stahlgestell für den Rahmen des Black Shack Plattenhalls 97

Eigenes Foto.

Abb. 65: Ablauf des Workflows für kleine Ensembles und Musik der 30er bis 50er Jahre 98

Abb. 66: Devils & Söhne (2007) ... 103

http://www.devils-und-soehne.de

Abb. 67: Sicht aus der Regie (links), Gelassene Stimmung zwischen den Takes (rechts) 100

Eigenes Foto.

Abb. 68: Ewe vor dem RCA 44A ... 105

Eigenes Foto.

Abb. 69: F.A. mit Tonemaster Lap-Steel (1930) und Ampeg Verstärker ... 106

Eigenes Foto.

Abb. 70: Schlagzeuger Benes mit der 14"/8" Ludwig Snaredrum ... 106

Eigenes Foto.

Abb. 71: Berlant Concertone Röhrenpreamp ... 107

Eigenes Foto.

Abb. 72: Die Regie des Black Shack Studios .. 107

Eigenem Foto.

Abb. 73: Aufbau für die Aufnahmen mit Devils & Söhne ... 104

Abb. 74: Ablauf des Workflows für kleine Ensembles und Musik der 40er bis 50er Jahre 106

Abb. 75: The Lonesome Drifters (2009) ... 110

http://www.myspace.com/thelonesomedrifters

Abb. 76: The Lonesome Drifters im Aufnahmeraum .. 111

Eigenes Foto.

Abb. 77: Stefan mit dem RCA 77-DX und dem Neumann KM84i .. 112

Eigenem Foto.

Abb. 79: Empirical Labs EL7 Fatso Sr. als VST-Plugin für die UAD DSP-Karte 109

Herstellerseite, http://www.uaudio.com

Abb. 78: Ein kurzer Plausch zwischen den Aufnahmen ... 113

Eigenes Foto.

Abb. 80: Togu Audio Line – Tal Tube als natives VST-Plugin .. 110
HERSTELLERSEITE http://WWW.KUNZ.CORRUPT.CH

ABB. 81: AUFBAU FÜR DIE AUFRNAHMEN MIT THE LONESOME DRIFTERS ... 111
EIGENE DARSTELLUNG. ERSTELLT MIT ADOBE ILLUSTRATOR CS4.

ABB. 82: ABLAUF DES WORKFLOWS FÜR MITTLERE UND LAUTE ENSEMBLES .. 112
EIGENE DARSTELLUNG. ERSTELLT MIT ADOBE ILLUSTRATOR CS4.

ABB. 83: THE FENDERS 55 LOGO ... 117
HTTP://WWW.MYSPACE.COM/THEFENDERSFIFTYFIVE

ABB. 84: DAS RCA 77-DX ALS MONO-OVERHEAD .. 118
EIGENES FOTO.

ABB. 85: DAS ADVANCED AUDIO CM47/67 VOR DEM BASS ... 118
EIGENES FOTO.

ABB. 86: AUFBAU FÜR DIE AUFRNAHMEN MIT THE FENDERS 55 .. 115
EIGENE DARSTELLUNG. ERSTELLT MIT ADOBE ILLUSTRATOR CS4.
7.6 Audio CDs

7.6.1 Audio CD 1 begleitend zum Theorieteil der Arbeit

<table>
<thead>
<tr>
<th>Track</th>
<th>Interpret</th>
<th>Stück</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Leadbelly</td>
<td>Good morning blues</td>
</tr>
<tr>
<td>02</td>
<td>Alan Lomax „Negro prison blues“</td>
<td>Early in the morning</td>
</tr>
<tr>
<td>03</td>
<td>Ali Farka Touré with Ry Cooder</td>
<td>Gomni</td>
</tr>
<tr>
<td>04</td>
<td>W.D. Stewart & Bennie Will Richardson</td>
<td>John Henry</td>
</tr>
<tr>
<td>05</td>
<td>Louis Jordan</td>
<td>Ain’t Nobody Here But Us Chickens</td>
</tr>
<tr>
<td>06</td>
<td>James Brown</td>
<td>Why Do You Do Me</td>
</tr>
<tr>
<td>07</td>
<td>The Coasters</td>
<td>I must be dreamin’</td>
</tr>
<tr>
<td>08</td>
<td>Frankie Lymon & Teenagers</td>
<td>Who can explain</td>
</tr>
<tr>
<td>09</td>
<td>The Carter Family</td>
<td>No Telephone in heaven</td>
</tr>
<tr>
<td>10</td>
<td>Milton Brown</td>
<td>Mama don’t allow</td>
</tr>
<tr>
<td>11</td>
<td>Hank Williams</td>
<td>Honky Tonkin’</td>
</tr>
<tr>
<td>12</td>
<td>Jimmie Rodgers</td>
<td>T for Texas (Blue Yodel No.1)</td>
</tr>
<tr>
<td>13</td>
<td>Elvis Presley</td>
<td>That’s allright (Alt. Take Sun Rec.)</td>
</tr>
<tr>
<td>14</td>
<td>Charlie Feathers</td>
<td>Bottle to the baby</td>
</tr>
<tr>
<td>15</td>
<td>Johnny Burnette</td>
<td>The train kept a rollin’</td>
</tr>
<tr>
<td>16</td>
<td>Jerry Lee Lewis</td>
<td>Whole lotta shakin goin on</td>
</tr>
<tr>
<td>17</td>
<td>Bill Haley & His Comets</td>
<td>R-O-C-K</td>
</tr>
<tr>
<td>18</td>
<td>Chuck Berry</td>
<td>Maybelene</td>
</tr>
</tbody>
</table>

7.6.2 Audio CD 2 begleitend zum Praxisteil der Arbeit

<table>
<thead>
<tr>
<th>Track</th>
<th>Interpret</th>
<th>Stück</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Devils & Söhne</td>
<td>My Cherie – DAW Version</td>
</tr>
<tr>
<td>02</td>
<td>Devils & Söhne</td>
<td>My Cherie – Distorted Version</td>
</tr>
<tr>
<td>03</td>
<td>Devils & Söhne</td>
<td>It don’t hurt anymore - DAW Version</td>
</tr>
<tr>
<td>04</td>
<td>Devils & Söhne</td>
<td>It don’t hurt anymore – Distorted Version</td>
</tr>
<tr>
<td>05</td>
<td>The Lonesome Drifters</td>
<td>Lonesome Train – DAW Version</td>
</tr>
<tr>
<td>06</td>
<td>The Lonesome Drifters</td>
<td>Lonesome Train – Digitally Distorted Version</td>
</tr>
<tr>
<td>07</td>
<td>The Lonesome Drifters</td>
<td>Lonesome Train – Analog Distorted Version</td>
</tr>
<tr>
<td>08</td>
<td>The Lonesome Drifters</td>
<td>I’m Out – DAW Version</td>
</tr>
<tr>
<td>09</td>
<td>The Lonesome Drifters</td>
<td>I’m Out – Digitally Distorted Version</td>
</tr>
<tr>
<td>10</td>
<td>The Lonesome Drifters</td>
<td>I’m Out – Analog Distorted Version</td>
</tr>
<tr>
<td>11</td>
<td>The Lonesome Drifters</td>
<td>7 Seas – DAW Version</td>
</tr>
<tr>
<td>12</td>
<td>The Lonesome Drifters</td>
<td>7 Seas – Digitally Distorted Version</td>
</tr>
<tr>
<td>13</td>
<td>The Lonesome Drifters</td>
<td>7 Seas – Analog Distorted Version</td>
</tr>
<tr>
<td>14</td>
<td>The Fenders 55</td>
<td>Cool cat racer</td>
</tr>
<tr>
<td>15</td>
<td>The Fenders 55</td>
<td>Never again</td>
</tr>
</tbody>
</table>
7.7 Anhang

7.7.1 Gegenüberstellung afrikanischer, europäischer und Blues Skalen

![Gegenüberstellung afrikanischer, europäischer und Blues Skalen]

7.7.2 Einfluss des Lastwiderstandes auf die Resonanzüberhöhung eines Gitarrentonabnehmers

![Einfluss des Lastwiderstandes auf die Resonanzüberhöhung eines Gitarrentonabnehmers]
7.7.3 Verstärkungsgeraden des V672 bei verschiedenen gegebenen Widerstandswerten

7.7.4 Berechnungstabelle der Verstärkungswerte eines V672

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Eingangswiderstand $R_e \times 2$</th>
<th>Gegenwiderstand R_g</th>
<th>Verstärkungsfaktor v_1 (35 dB)</th>
<th>Verstärkungsfaktor v_2 (65 dB)</th>
<th>Verstärkungsfaktor v_3 (Boost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>6,8 kΩ</td>
<td>2,7 kΩ</td>
<td>1</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>02</td>
<td>3 kΩ</td>
<td>5,6 kΩ</td>
<td>1,6</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>03</td>
<td>2,4 kΩ</td>
<td>13 kΩ</td>
<td>2,0</td>
<td>15</td>
<td>82</td>
</tr>
<tr>
<td>04</td>
<td>1,8 kΩ</td>
<td>20 kΩ</td>
<td>2,6</td>
<td>20</td>
<td>108</td>
</tr>
<tr>
<td>05</td>
<td>1,2 kΩ</td>
<td>27 kΩ</td>
<td>3,8</td>
<td>25</td>
<td>135</td>
</tr>
<tr>
<td>06</td>
<td>0,75 kΩ</td>
<td>36 kΩ</td>
<td>5,8</td>
<td>31</td>
<td>170</td>
</tr>
<tr>
<td>07</td>
<td>0,62 kΩ</td>
<td>56 kΩ</td>
<td>6,8</td>
<td>45</td>
<td>247</td>
</tr>
<tr>
<td>08</td>
<td>0,47 kΩ</td>
<td>82 kΩ</td>
<td>8,6</td>
<td>64</td>
<td>347</td>
</tr>
<tr>
<td>09</td>
<td>0,36 kΩ</td>
<td>110 kΩ</td>
<td>10,7</td>
<td>83</td>
<td>455</td>
</tr>
<tr>
<td>10</td>
<td>0,24 kΩ</td>
<td>160 kΩ</td>
<td>14,5</td>
<td>119</td>
<td>647</td>
</tr>
<tr>
<td>11</td>
<td>0,11 kΩ</td>
<td>220 kΩ</td>
<td>23,4</td>
<td>161</td>
<td>878</td>
</tr>
<tr>
<td>12</td>
<td>0 kΩ</td>
<td>330 kΩ</td>
<td>49,2</td>
<td>239</td>
<td>1301</td>
</tr>
</tbody>
</table>
7. Technique of Velocity Microphone Placement.—The proper placement of the microphone is essential in order to realize fully its inherent advantages. For this reason, the following instructions should be carefully studied, and close attention be given to the results of any special placement with a view towards future improvement of the technique. These instructions can of course only serve as a guide, and a study should be made to determine the best microphone placement for each condition.

(a) General.—The source of sound, speaker, announcer or musical instrument, should not be placed closer to the microphone than 2 feet and a distance of 3 to 4 feet is to be preferred. At shorter distances there is a tendency toward accentuation of low frequencies, which may result in making voices sound "boomy." In this respect, the use of the velocity microphone differs greatly from that of the condenser microphone with which the speaker or soloist has usually worked at a distance of 4 to 6 inches.

The placement of a speaker or musical instrument off from the center line of the microphone will in no way affect the quality of pickup, but will merely attenuate the direct sound pickup, thereby raising the ratio of reverberation to direct pickup.

The microphone is bi-directional. Speakers, instruments, or players may be placed on either or both sides of the microphone with equal effect. The diagrams (Figures 8, 9, 10, 11 and 12) will serve as examples of the advantages which arise from the bi-directional characteristic.

For the most satisfactory results, the microphone should not be placed closer than 3 feet to any solid reflecting surface. This statement is, of course, general and specific conditions may require otherwise, such as in frontlight mounting.

The diagrams referred to in the subsequent paragraphs and the discussion concerning them can only serve to indicate some of the possible placements under particular conditions. The final decision as to what constitutes the proper placement must rest with someone who is competent to judge the quality of the results as reproduced by the monitor speaker.

(b) Soloist with Piano.—Interesting effects may be obtained by changing the angle of the micro-
phone with respect to the piano, thus changing the ratio of reverberation to direct pickup. The distance between the soloist and microphone should be determined by the strength of his (or her) voice, and the piano should be placed accordingly. The general arrangement is shown in Figure 8. Under no conditions should the soloist be less than 2 feet from the microphone.

(c) Plays.—The bi-directional characteristic of the microphone may be used to its fullest advantage in broadcasting by grouping the players about the microphone at such positions that their voice levels match to form the desired composite. See Figure 9. With such an arrangement, considerable if not all of the moving and dodging back and forth of the characters seeking positions advantageous to the presentation may be avoided.

When the microphone is used by a speaker located at a table or desk, the microphone should be so placed that it picks up direct sound from the speaker rather than reflected sound from the surface of the table, desk or manuscript.

(d) Dance Orchestra.—The diagram (Figure 10) is self-explanatory, the only precaution necessary being to keep the soloist at least 2 feet, and preferably 3 feet, from the microphone.

Due to the fact that artists and announcers cannot work close to the microphone, some difficulty may be experienced in obtaining the proper balance between the artist or announcer and the orchestra. This difficulty can be overcome quite satisfactorily by using two microphones, one to pick up the orchestra and the other to pick up the artist or announcer. The artist’s microphone should be located so that its “dead zone” is toward the orchestra. By properly setting the mixing controls, the level of the orchestra can be controlled so that a satisfactory back-ground accompaniment of music is obtained.

In locating the microphone with respect to an orchestra, care should be taken to avoid reflected pickup from hard surfaced floors. Such reflections can be avoided by the use of carpets or similar material on the floor.

(e) Large Orchestra.—An arrangement for a large orchestra is shown in Figure 11. Two microphones may be used to advantage for such an assembly. See also paragraph (d) above. The arrangement shown in Figure 11 was used successfully in the RCA Victor recording studios in Camden, N. J. It must be born in mind, however, that this arrangement will not necessarily be the best in all studios because of differences in their acoustic properties. Changes in this arrangement should not need to be very extensive in order to give excellent results.

(f) Special Considerations for Sound Motion Picture Recording.—The directional characteristic and greater sensitivity of this microphone are especially important in sound recording for motion pictures. Because of the necessity of constructing sound stages for sight as well as sound, the acoustic properties of the set are frequently sacrificed in favor of the scenic properties, whereupon more difficulty is experienced in controlling the effect of undesired echoes and reverberations. Also, because the microphone cannot be in the field of view of

![Figure 8—Soloist with Piano](image1)
![Figure 9—Plays](image2)
![Figure 10—Dance Orchestra](image3)
the cameras, the microphone must be located farther from the actors than is the case in a broadcasting studio. With the increased distance between the sound source and the microphone, the reverberation, echo and background noise effects are more troublesome. Furthermore, there are always people and machinery in motion on the set other than those in the picture and sounds caused by them must not be picked up.

Previous to the production of the velocity microphone, it has been necessary with other microphones to use microphone baffles, sound concentrators, acoustic treatment of sets and studios, camera “blimps,” etc. The use of these devices as aids to the perfect reproduction of sound and picture with the proper illusion of naturalness has not been entirely eliminated through the use of the velocity microphone, but has been greatly minimized.

As mentioned in section 5, a felt baffle may be placed so as to cut off the “pickup” of sound from directions opposite to the source of desired sound. The microphone, in many cases, may be placed so that an imaginary plane coincident with the plane of the ribbon will pass through sources of undesired sound, either direct or reflected, and so minimize the effects of extraneous or reverberant sound.

The necessity of highly sound-proofed booths and “blimps” is evidently reduced if cameras are operated in positions in the “plane of zero sound” and the degree of sound-proofing necessary for sound originating within the “dead zone” is, of course, dependent upon the reflecting surfaces present which may return the undesired sound to the microphone from such directions that response may be obtained. A camera, for example, may be operated outside of a booth and without a “blimp” if it is placed in the plane of zero sound, providing that none of the camera noise is returned to the microphone from any other direction by reflecting surfaces, which condition may be most generally realized in out of door recording. See Figure 12.

The nearer a microphone may be placed to the subject within the limits of the foregoing paragraphs, the more natural will be the quality of

Figure 11—Microphone and Orchestra Arrangement for Symphony Orchestra

LEGEND

D Detector
M 2 Velocity Microphones
F1 6 First Violins
F2 6 Second Violins
F3 4 Violas
F4 4 Cellos
F5 3 String Bass
F 3 Flutes
Ob 3 Oboes
H1 2 Harps
H2 4 French Horns
G 4 Clarinets
B 3 Bassoons
T1 3 Trumpets
T2 2 Tympani and Traps
T3 4 Trombones
T4 4 Tuba
Total—58 Musicians

Figure 12—Camera Location for Sound Motion Picture Work
recorded sound. This statement is made without regard to "long-shot" sound which is deliberately made poorer in order to produce the desired match between picture and sound. An indefinable quality of "presence" is the principle difference between "long-shot" and "close-up" sound and this quality is rapidly lost as the microphone is moved farther from the subject. In many cases, two cameras are trained on the subject simultaneously and at least that portion of the sound used with the close-up picture should have "presence" to match the picture. The increased field of view of the long-shot camera precludes the possibility of placing a microphone close enough to the subject to give the desired close-up sound except through the use of the velocity microphone and by taking full advantage of its directional characteristics and increased sensitivity.

While the bi-directional characteristic of the microphone is particularly desirable for broadcasting purposes, for recording it may be desired to utilize the pickup from but one direction. Pick-up from the opposite direction may be made ineffective by placing a baffle or shield of heavy sound absorbing material, such as felt, approximately 3 feet from the microphone on the side from which the sound is to be blocked. The felt should be approximately 6 to 10 feet square.

(g) Public Address.—For public address use the microphone can usually be placed near the speaker (within 3 or 4 feet). It is important to see that the direction of minimum pick-up is toward the loudspeaker system to prevent acoustic feed-back. If the speaker must have latitude of movement on the stage, it may be necessary to have a microphone installed at each side to obtain satisfactory pickup.

(h) Sound Reinforcing.—Microphones used for this purpose must generally be concealed and may be placed and successfully operated in the wings, footlights, flys, etc. of the stage. When the microphone is placed in a footlight trough, heavy sound absorbing felt should be placed behind the microphone to prevent undesirable reflexion effects. Such a system usually requires a number of microphones and the detailed location of these microphones is largely determined by the exact use of the microphone, constructional details of the stage and other conditions so numerous as to preclude any definite statement of rules or methods of application. The plane of zero sound may be utilized to great advantage in eliminating undesirable reflexion, reflexion and diffraction effects usually encountered when a microphone is located in a cavity. This fact accounts for the highly successful application of this microphone to footlight trough mounting. Detailed information as to the method of installation for a particular condition may be obtained on request.

8. Operation.—In general, the microphone will operate satisfactorily and require very little attention. It should give the normal output listed in section 3.

The microphone may be mounted in several ways. The most common mounting is the program or floor stand. This stand is adjustable as to height. The center of the velocity microphone may be located at any height from 8½ to 8½ inches above the floor. In order to raise or lower the stand, the vertical column clamping screw should first be loosened. If it is desired to raise the microphone, all that is necessary is to lift it to the desired point and there it will lock itself automatically. Usually, it will remain fixed at this position unless there is vibration of the microphone and stand are moved around. This moving may cause the stand to slowly slide downward. The clamping screw is
Das Siemens-Bandmikrophon und der Siemens-Bandsprecher

Von Erwin Gerlach, Ingenieur im Zentralaboratorium des Wernerwerks.

Mit Ausnahme des Kohlekörner-Mikrophons und des Kathodophons sind die oben skizzierten Mikrophone „umkehrbar“, d. h. sie wirken als Telefon oder Schallsender, wenn man ihnen elektrische Leistung in Gestalt von Sprechstrom zuführt. (Als Umkehrung des Kathodophons könnte man höchstens die bekannte sprechende Bogenlampe bezeichnen.) Das Siemens-Bandmikrophon und der Siemens-Bandsprecher, deren Betrachtung wir uns nunmehr zuwenden, sind zwei Apparate, bei denen das Prinzip der Umkehrbarkeit ebenfalls vollständig erfüllt ist. Sie verhalten sich zueinander wie Dynamomaschine und Motor, zwischen denen z. B. für den Fall der Gleichstrom-Nebenschlußmaschine auch durchaus kein Unterschied besteht. Die physikalische Grundlage ist folgende:

A. Bewegt man einen Leiter im Magnetfelde, so entsteht eine elektrische Spannung, und der sich durch einen Leiter im Magnetfeld Strom, so wird der Leiter in Bewegung gesetzt. Soll dieses Prinzip für akustisch-elektrische Zwecke verwendet werden, so wird es sich offenbar darum handeln, die Bewegungen des Leiters im Magnetfelde möglichst gut auf die Luft zu übertragen (Telephon) und umgekehrt möglichst viel von den Luftbewegungen in die Schallwelle auf den Leiter.

In Bild 1 ist bereits angedeutet, daß das Band mit einer großen Zahl von feinen Querrillen versehen ist. Dies hat den Zweck, die Quersteifigkeit des Bandes zu erhöhen, vor allem aber wird dadurch erreicht, daß das Band sehr erhebliche Amplituden machen kann, ohne daß dabei nennenswerte rücktreibende Kräfte auftreten.

Eine weitere beabsichtigte Folge dieser eine sehr weiche Federung bietenden Anordnung des Bandes ist das Unhörbarwerden seiner Eigenfrequenz, weil die Eigenschwingungsverzögerung kleiner wird als die untere Hörgrenze, die bei etwa 16 Schwingungen in der Sekunde liegt. Nun spielt zwar die Eigenschwingung bei diesen dünnen Bändern keine bedeutende Rolle, weil die Luftdämpfung und die Dämpfung in dem Magnetfeld, in dem sie schwingen, ausgeprägte Resonanzlagen nicht zustande kommen lassen; immerhin aber wird durch die genannte Maßnahme von vornherein jede Bevorzugung von Tonbereichen durch Resonanz ausgeschlossen.

Weiter erhöht wird die Elastizität des Bandes, im besonderen für Lautsprecherverzwecke, durch Federung der Klemmstellen K₁ und K₂ (in Bild 1 nicht gezeichnet), wie man sie beispielsweise durch Blattfedern erzielen kann.

Die eben angestellten Erwägungen gelten in gleichem Maße für das Mikrophon sowohl wie für den Lautsprecher. Im äußeren Aufbau sind infolgedessen beide Apparate gleich und lediglich durch die Ausmaße verschieden.

Da die elektrische Energie, die das Bandmikrophon liefert, bequem und völlig einwandfrei verstärkt werden kann, ist es nicht so wichtig, daß der Wirkungsgrad des Mikrophons so hoch wie irgend möglich gemacht wird. Man kommt vielmehr mit Permanentmagneten völlig aus und braucht auch nicht den Schall durch Trichter auf das Band zu konzentrieren. Auch kann man das Mikrophon-Aluminiumband sehr dünn machen.

Bild 4. Der Bandeinsatz.
tauschen, ohne eine Schraube oder einen Kontakt lösen zu müssen.

Der trichterlose Apparat hat eine größere Lautstärken als die bekannten Systeme mit Trichtern. Rüsst man ihn mit einem Trichter aus, so erzielt man noch einen weiteren Gewinn an Lautstärke. Sind die Abmessungen des Trichters kleiner oder etwa von der Größe der Wellenlänge der wiederzugebenden Töne, so muß man neben der verstärkenden Wirkung des Trichters auch die Trichterresonanzen in Kauf nehmen. Ebenso wie die Luftsäule in einer Orgelpfeife wird nämlich auch die Luftsäule, die in einem Trichter eingeschlossen ist, stehende Wellen ausbilden, d. h. in diesem Falle bestimmte Töne

bereiche durch besonders starkes Mitschwingen unangenehm hervorheben. Die Wellenlänge der mittleren in der Sprache vorhandenen Frequenzen ist in Luft etwa $\frac{1}{5}$ m. Somit zeigen alle Trichter von annähernd solchen Abmessungen (Gramophon) den wenig schönen „Trichtercharakter“.

Nimmt man dagegen Trichter von mindestens etwa 4 m Länge und mehr, so bilden sich im Bereich der mittleren Sprechfrequenzen keine stehenden Wellen mehr aus. Versuche mit einem solchen Trichter, der auf dem Dach des Wernerwerkstes aufgestellt wurde, haben ergeben, daß in einer Entfernung von mehreren hundert Metern vom Lautsprecher noch jedes Wort mühsam verständlich war.

Technischer Rückblick auf das Jahr 1923

Mitgeteilt vom Literarischen Bureau der SSW.

(Schluß)

Ein bedeutender Fortschritt in der Herstellung von Hochspannungs-Dreifachkabeln ist dadurch erzielt, daß die SSW diese bis zu Betriebsspannungen von 60 000 V durchgebildet haben. Ein derartiges Kabel wurde bereits in Deutschland verlegt.1) In den norwegischen Fjorden haben die SSW im Laufe des Jahres 1923 bemerkenswerte Seekabelverlegungen unter Überwindung erheblicher Schwierigkeiten ausgeführt. Es handelte sich um Starkstromkabel für 22 000 V, die in Einzellängen bis zu 3 km ohne Mufe hergestellt und verlegt wurden2).

Die Auswahl an Installationsmaterial hat durch Einführung von Gummischlauchleitungen für transportable Stromverbraucher eine wichtige Bereicherung erfahren.3)

Ein neuer 6 A-Stecker ist durch seine besonders widerstandsfähige und für die Montage besonders einfache Ausführung auf der diesjährigen Frühlingsmesse vielfach aufgefallen. Die Rohrdrähteitung wurde durch Einführung der „Nullpha“-Rohrdrähte mit eingelegtem blanken Nulleiter vereinfacht und verbilligt.

Für Metalldrahtlampen ohne und mit Gasfüllung wurden neue Leuchten nach wissenschaftlichen und wirtschaftlichen Gesichtspunkten durchgebildet, die allseitige Billigung bei Fachgenossen und Abnehmern fanden.

Seit kurzem werden von der Firma Gebr. Siemens & Co. für Scheinwerfer zu Kinoaufnahmen großen Stils außer der bisher allein gebräuchlichen unverkupferten, rotierenden Effektkohle, der der Strom am Brennende zugeführt werden muß, verkupferte Elektroden für Stromstärken bis zu 300 A hergestellt. Diese Kohlen bedürfen keiner Stromzuführung am Brennende und keiner Drehung, woraus sich eine wesentlich einfacher Lampenkonstruktion und größere Betriebssicherheit ergab.

Das Zählerwerk hat sein Arbeitsgebiet durch Aufnahme der Herstellung eines Wasserstoff-Elektrolytzählers sowie eines Eichzählers erweitert. Im Zusammenhang mit den bereits er

1) Siemens-Zeitschrift, Februar 1924, S. 62.
2) Siemens-Zeitschrift, April 1923, S. 161.
3) Siemens-Zeitschrift, Februar 1924, S. 50.
in größerer Entfernung vom Lautsprecher übertönt der
Bandsprecher wiederum den Lärm.

Die genaue Fläche, die bei den Versuchen ausreichend von Schall getroffen wurde, betrug etwa 125000 m², d. h.
sie bot Raum für eine Versammlung von 1 000 000 Menschen, wenn
man die bei Versammlungen durchaus angängige
Dichte von vier Personen je m² annimmt.

Unmittelbar unterhalb des Trichters, d. h. also quer zu
der Trichterachse, ist weniger gut zu versuchen, weil man
hier in der Hauptsache die um die Trichtermitte her-
umgebeugten tiefen und tiefsten Frequenzen hört.

Freiluftstation in Holland.

Von der Prov. Gelderschen Elektrizitäts-Verwaltung
in Arnhem erhielten die SSW den Auftrag auf Errichtung
der Freilufttransformatorenstation Lent.

Die Anlage wird nach vollen Ausbau umfassen: vier
Transformatoranlagen, bestehend aus je drei Einphasen-
transformatoren von je 1700 kVA, 10000/50000 V in Drei-
ecks-Dreieckschaltung (erster Ausbau: drei Transformator-
anlagen, sechs ausgebende Freileitungen für 50000 V (erster
Ausbau: zwei Leitungen), einen Sannschieneaufpunkt-
schalter, einen Löschtransformator für 50 kVA.

Die Sannschieneapparatur (Transformator, Lösch-
transformator, Ölchalter, Trennschalter, Doppelsammel-
schiene) wird im Freien aufgestellt, während die

Z E I T S C H R I F T

ELEKTROMASCHINENBAU

Turbogeneratoren für große Leistungen. „Electrical Review“ (Lond.), 94, Bd., 30. Mai 1924, 2827, S. 898,
2 Abb. (Beschreibung eines Brush-Ljungström-Turbogenerators für 7140 kVA, 325 V).

Drehrästrommotoren mit Geschwindigkeitsregulierung. „Engineering“, 117, Bd., 23. Mai 1924, 3007,
S. 658–66, 14 Abb. (Einige neuere Konstruktionen der British Thomson Houston Company werden an Hand von Lichtbildern und Konstruktionzeichnungen beschrieben.)

bis 67, 1 Kurventafel. (Der Entwicklungsgang der Konstruktion von Maschinen, Transformatoranlagen und Hochspannungsaufzügen mit Bezug auf die verwendeten Isoliermaterialien wird geschildert.)

KRAFTÜBERTRAGUNG

Erdschluß- und Kurzschluß, R. Bausch, „Elektrotechnik und Maschinenbau“ (Wien), 42, Jg., 25. Mai 1924,
21, S. 353–38. (Vortrag im Elektrotechnischen Verein in Wien über Erdschluß- und Kurzschlußerscheinungen von
R. Bausch, mit anschließender Diskussion.)

Ein Beitrag zur Richtungsbezeichnung in Vektoradiogrammen. Dr.-Ing. H. Kafka, „Elektrotechnik und
Maschinenbau“ (Wien), 42, Jg., 25. Mai 1924, 21, S. 329 bis 33, 7 Abb. (Die Bestimmung der Vorzeichen von
Spannungen und Strömen bei Wechselstromausgaben und die damit zusammenhängende Richtungsbezeichnung in
Vektoradiogrammen.)